
Distributed Cache Service

User Guide

Date 2022-04-12

Contents

1 Service Overview... 1
1.1 What Is DCS?.. 1
1.2 Application Scenarios... 3
1.3 DCS Instance Types... 5
1.3.1 Single-Node Redis..5
1.3.2 Master/Standby Redis.. 7
1.3.3 Proxy Cluster Redis.. 9
1.3.4 Redis Cluster.. 11
1.3.5 Single-Node Memcached..13
1.3.6 Master/Standby Memcached.. 15
1.4 DCS Instance Specifications...16
1.4.1 Redis 3.0 Instance Specifications..17
1.4.2 Redis 4.0 and 5.0 Instance Specifications..18
1.4.3 Memcached Instance Specifications... 26
1.5 Command Compatibility.. 28
1.5.1 Redis 3.0 Commands.. 28
1.5.2 Redis 4.0 Commands.. 32
1.5.3 Redis 5.0 Commands.. 35
1.5.4 Web CLI Commands... 39
1.5.5 Memcached Commands..43
1.5.6 Command Restrictions for Cluster Instances... 48
1.5.7 Other Command Usage Restrictions.. 49
1.6 HA and DR Policies...50
1.7 Comparing Redis Versions... 53
1.8 Comparing Redis and Memcached... 54
1.9 Comparing DCS and Open-Source Cache Services... 55
1.10 Basic Concepts... 59
1.11 Permissions Management... 60
1.12 Related Services.. 63

2 Permissions Management... 66
2.1 Creating a User and Granting DCS Permissions...66
2.2 DCS Custom Policies.. 67

3 Getting Started.. 69

Distributed Cache Service
User Guide Contents

2022-04-12 ii

3.1 Creating an Instance.. 69
3.1.1 Identifying Requirements..69
3.1.2 Preparing the Environment.. 70
3.1.3 Creating a DCS Redis Instance.. 71
3.1.4 Creating a DCS Memcached Instance.. 73
3.2 Accessing an Instance..75
3.2.1 Accessing a DCS Redis Instance Through redis-cli... 75
3.2.2 Access in Different Languages.. 77
3.2.2.1 Java... 78
3.2.2.1.1 Jedis... 78
3.2.2.1.2 Lettuce.. 81
3.2.2.1.3 Redisson... 82
3.2.2.2 Lettuce Integration with Spring Boot..86
3.2.2.3 Clients in Python.. 91
3.2.2.4 go-redis.. 94
3.2.2.5 hiredis in C++... 95
3.2.2.6 C#.. 98
3.2.2.7 PHP... 99
3.2.2.7.1 phpredis... 100
3.2.2.7.2 Predis.. 102
3.2.2.8 Node.js... 103
3.2.3 Accessing a DCS Redis 4.0 or 5.0 Instance on the Console.. 106
3.2.4 Accessing a DCS Memcached Instance..107
3.3 Viewing Details of a DCS Instance... 108

4 Operation Guide..111
4.1 Operating DCS Instances... 111
4.1.1 Modifying DCS Instance Specifications... 111
4.1.2 Restarting DCS Instances..114
4.1.3 Deleting DCS Instances... 115
4.1.4 Performing a Master/Standby Switchover for a DCS Instance..116
4.1.5 Clearing DCS Instance Data.. 117
4.1.6 Exporting DCS Instance List...117
4.1.7 Command Renaming... 118
4.2 Managing DCS Instances... 118
4.2.1 Configuration Notice... 118
4.2.2 Modifying Configuration Parameters...119
4.2.3 Modifying Maintenance Time Window... 129
4.2.4 Modifying the Security Group.. 129
4.2.5 Viewing Background Tasks.. 130
4.2.6 Viewing Data Storage Statistics of a DCS Redis 3.0 Proxy Cluster Instance...131
4.2.7 Managing Tags.. 131
4.2.8 Managing Shards and Replicas.. 133

Distributed Cache Service
User Guide Contents

2022-04-12 iii

4.2.9 Cache Analysis..133
4.2.10 Managing IP Address Whitelist.. 136
4.2.11 Viewing Redis Slow Queries..137
4.2.12 Viewing Redis Run Logs... 138
4.2.13 Diagnosing an Instance.. 138
4.3 Backing Up and Restoring DCS Instances.. 139
4.3.1 Overview.. 139
4.3.2 Configuring a Backup Policy... 141
4.3.3 Manually Backing Up a DCS Instance..142
4.3.4 Restoring a DCS Instance... 143
4.3.5 Downloading a Backup File...144
4.4 Migrating Data with DCS...145
4.4.1 Introduction to Migration with DCS... 145
4.4.2 Importing Backup Files... 147
4.4.2.1 Importing Backup Files from an OBS Bucket...147
4.4.2.2 Importing Backup Files from Redis... 150
4.4.3 Migrating Data Online.. 151
4.5 Managing Passwords...154
4.5.1 DCS Instance Passwords... 154
4.5.2 Changing Instance Passwords...155
4.5.3 Resetting Instance Passwords... 156
4.5.4 Changing Password Settings for DCS Redis Instances... 157
4.5.5 Changing Password Settings for DCS Memcached Instances..158

5 Monitoring.. 159
5.1 DCS Metrics.. 159
5.2 Viewing DCS Monitoring Metrics.. 210
5.3 Configuring Alarm Rules for Critical Metrics.. 211

6 Auditing...214
6.1 Operations That Can Be Recorded by CTS...214
6.2 Viewing Traces on the CTS Console... 217

7 FAQs... 219
7.1 Instance Types/Versions... 219
7.1.1 Comparing Versions... 219
7.1.2 New Features of DCS for Redis 4.0... 220
7.1.3 New Features of DCS for Redis 5.0... 224
7.2 Client and Network Connection.. 231
7.2.1 Security Group Configurations... 231
7.2.2 Does DCS Support Public Access?... 232
7.2.3 Does DCS Support Cross-VPC Access?... 232
7.2.4 What Should I Do If Access to DCS Fails After Server Disconnects?...232
7.2.5 Why Do Requests Sometimes Time Out in Clients?... 233

Distributed Cache Service
User Guide Contents

2022-04-12 iv

7.2.6 What Should I Do If an Error Is Returned When I Use the Jedis Connection Pool?................................ 233
7.2.7 Why Is "ERR unknown command" Displayed When I Access a DCS Redis Instance Through a Redis
Client?.. 234
7.2.8 How Do I Access a DCS Redis Instance Through Redis Desktop Manager?...235
7.2.9 What If "ERR Unsupported CONFIG subcommand" is Displayed in SpringCloud?..................................236
7.2.10 How Do I Troubleshoot Redis Connection Failures?...237
7.2.11 What Should Be Noted When Using Redis for Pub/Sub?... 238
7.3 Redis Usage.. 238
7.3.1 Why Is CPU Usage of a DCS Redis Instance 100%?... 238
7.3.2 Can I Change the VPC and Subnet for a DCS Redis Instance?..238
7.3.3 Why Aren't Security Groups Configured for DCS Redis 4.0 and 5.0 Instances?.. 239
7.3.4 Do DCS Redis Instances Limit the Size of a Key or Value?...239
7.3.5 Can I Obtain the Addresses of the Nodes in a Cluster DCS Redis Instance?... 239
7.3.6 Why Is Available Memory of a DCS Redis 3.0 Instance Smaller Than Instance Cache Size?............... 239
7.3.7 Does DCS for Redis Support Multiple Databases?.. 239
7.3.8 Does DCS for Redis Support Redis Clusters?... 240
7.3.9 Does DCS for Redis Support Sentinel?...240
7.3.10 What Is the Default Data Eviction Policy?... 240
7.3.11 What Should I Do If an Error Occurs in Redis Exporter?.. 241
7.3.12 Why Is Memory Usage More Than 100%?.. 241
7.3.13 Why Is Redisson Distributed Lock Not Supported by DCS Proxy Cluster Redis 3.0 Instances?......... 241
7.3.14 Can I Customize or Change the Port for Accessing a DCS Instance?... 241
7.3.15 Can I Modify the Connection Addresses for Accessing a DCS Instance?...242
7.3.16 Does DCS Support Cross-AZ Deployment?.. 242
7.3.17 Why Does It Take a Long Time to Start a Cluster DCS Instance?... 242
7.3.18 Does DCS for Redis Provide Backend Management Software?..242
7.3.19 Why Is Memory of a DCS Redis Instance Used Up by Just a Few Keys?...242
7.3.20 Can I Recover Data from Deleted DCS Instances?.. 242
7.3.21 Why Is "Error in execution" Returned When I Access Redis?.. 243
7.4 Redis Commands.. 243
7.4.1 How Do I Clear Redis Data?..243
7.4.2 How Do I Rename High-Risk Commands?.. 244
7.4.3 Does DCS for Redis Support Pipelining?... 244
7.4.4 Does DCS for Redis Support the INCR and EXPIRE Commands?..244
7.4.5 Why Do I Fail to Execute Some Redis Commands?.. 244
7.4.6 Why Does a Redis Command Fail to Take Effect?...244
7.4.7 Is There a Time Limit on Executing Redis Commands? What Will Happen If a Command Times Out?
... 245
7.5 Instance Scaling and Upgrade... 245
7.5.1 Can DCS Redis Instances Be Upgraded, for Example, from Redis 3.0 to Redis 4.0 or 5.0?................... 245
7.5.2 Are Services Interrupted If Maintenance is Performed During the Maintenance Time Window?......245
7.5.3 Are Instance Resources Affected During Specification Modification?.. 245
7.5.4 Are Services Interrupted During Specification Modification?.. 246

Distributed Cache Service
User Guide Contents

2022-04-12 v

7.5.5 Why Can't I Modify Specifications for a DCS Redis/Memcached Instance?... 246
7.6 Monitoring and Alarm.. 246
7.6.1 Does Redis Support Command Audits?...247
7.6.2 What Should I Do If the Monitoring Data of a DCS Redis Instance Is Abnormal?..................................247
7.6.3 Why Is Available Memory of Unused DCS Instances Less Than Total Memory and Why Is Memory
Usage of Unused DCS Instances Greater Than Zero?... 247
7.6.4 Why Is Used Memory Greater Than Available Memory?..247
7.7 Data Backup, Export, and Migration... 247
7.7.1 How Do I Export DCS Redis Instance Data?.. 247
7.7.2 Can I Export Backup Data of DCS Redis Instances to RDB Files Using the Console?............................. 248
7.7.3 Does DCS Support Data Persistence?.. 248
7.7.4 Online Migration with Rump.. 248
7.8 Master/Standby Switchover.. 250
7.8.1 When Does a Master/Standby Switchover Occur?..250
7.8.2 How Does Master/Standby Switchover Affect Services?...250
7.8.3 Does the Client Need to Switch the Connection Address After a Master/Standby Switchover?.........250
7.8.4 How Does Redis Master/Standby Replication Work?...250
7.9 Memcached Usage...251
7.9.1 Can I Dump DCS Memcached Instance Data for Analysis?... 251
7.9.2 What Memcached Version Is Compatible with DCS for Memcached?...251
7.9.3 What Data Structures Does DCS for Memcached Support?.. 251
7.9.4 Does DCS for Memcached Support Public Access?... 251
7.9.5 Can I Modify Configuration Parameters of DCS Memcached Instances?... 251
7.9.6 What Are the Differences Between DCS for Memcached and Self-Hosted Memcached?.................... 251
7.9.7 What Policies Does DCS for Memcached Use to Deal with Expired Data?.. 252
7.9.8 How Should I Select AZs When Creating a DCS Memcached Instance?... 252

A Change History..254

Distributed Cache Service
User Guide Contents

2022-04-12 vi

1 Service Overview

1.1 What Is DCS?
Distributed Cache Service (DCS) is an online, distributed, in-memory cache service
compatible with Redis and Memcached. It is reliable, scalable, usable out of the
box, and easy to manage, meeting your requirements for high read/write
performance and fast data access.

● Usability out of the box
DCS provides single-node, master/standby, and cluster instances with
specifications ranging from 128 MB to 1024 GB. DCS instances can be created
with just a few clicks on the console, without requiring you to prepare servers.
DCS Redis 4.0 and 5.0 instances are containerized and can be created within
seconds.

● Security and reliability
Instance data storage and access are securely protected through security
management services, including Identity and Access Management (IAM),
Virtual Private Cloud (VPC), Cloud Eye, and Cloud Trace Service (CTS).
Master/Standby and cluster instances can be deployed within an availability
zone (AZ) or across AZs.

● Auto scaling
DCS instances can be scaled up or down online, helping you control costs
based on service requirements.

● Easy management
A web-based console is provided for you to perform various operations, such
as restarting instances, modifying configuration parameters, and backing up
and restoring data. RESTful application programming interfaces (APIs) are
also provided for automatic instance management.

● Online migration
You can create a data migration task on the console to import backup files or
migrate data online.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 1

DCS for Redis
Redis is a storage system that supports multiple types of data structures, including
key-value pairs. It can be used in such scenarios as data caching, event
publication/subscription, and high-speed queuing, as described in Application
Scenarios. Redis is written in ANSI C, supporting direct read/write of strings,
hashes, lists, sets, sorted sets, and streams. Redis works with an in-memory
dataset which can be persisted on disk.

DCS Redis instances can be customized based on your requirements.

Table 1-1 DCS Redis instance configuration

Instance
type

DCS for Redis provides the following types of instances to suit
different service scenarios:
Single-node: Suitable for caching temporary data in low reliability
scenarios. Single-node instances support highly concurrent read/
write operations, but do not support data persistence. Data will be
deleted after instances are restarted.
Master/Standby: Each master/standby instance runs on two nodes
(one master and one standby). The standby node replicates data
synchronously from the master node. If the master node fails, the
standby node automatically becomes the master node.
Proxy Cluster: In addition to the native Redis cluster, a Proxy Cluster
instance has proxies and load balancers. Load balancers implement
load balancing. Different requests are distributed to different
proxies to achieve high-concurrency. Each shard in the cluster has a
master node and a standby node. If the master node is faulty, the
standby node on the same shard is promoted to the master role to
take over services.
Redis Cluster: Each Redis Cluster instance consists of multiple
shards and each shard includes a master node and multiple
replicas (or no replica at all). Shards are not visible to you. If the
master node fails, a replica on the same shard takes over services.
You can split read and write operations by writing to the master
node and reading from the replicas. This improves the overall cache
read/write performance.

Instance
specificat
ion

DCS for Redis provides instances of different specifications, ranging
from 128 MB to 1024 GB.

Redis
version

DCS instances are compatible with open-source Redis 3.0, 4.0, and
5.0.

Underlyin
g
architect
ure

Standard Redis based on VMs: supports up to 100,000 queries per
second (QPS) at a single node.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 2

https://redis.io/topics/data-types-intro#redis-strings
https://redis.io/topics/data-types-intro#redis-hashes
https://redis.io/topics/data-types-intro#redis-lists
https://redis.io/topics/data-types-intro#redis-sets
https://redis.io/topics/data-types-intro#redis-sorted-sets
https://redis.io/topics/streams-intro

High
availabili
ty (HA)
and DR

Master/standby and cluster DCS Redis instances can be deployed
across AZs in the same region with physically isolated power
supplies and networks.

For more information about open-source Redis, visit https://redis.io/.

DCS for Memcached
Memcached is an in-memory key-value caching system that supports read/write
of simple strings. It is often used to cache backend database data to alleviate load
on these databases and accelerate web applications. For details about its
application scenarios, see Memcached Application Scenarios.

In addition to full compatibility with Memcached, DCS for Memcached provides
the hot standby and data persistence.

Table 1-2 DCS Memcached instance configuration

Instance
type

DCS for Memcached provides the following two types of instances
to suit different service scenarios:
Single-node: Suitable for caching temporary data in low reliability
scenarios. Single-node instances support highly concurrent read/
write operations, but do not support data persistence. Data will be
deleted after instances are restarted.
Master/Standby: Each master/standby instance runs on two nodes
(one master and one standby). The standby node replicates data
synchronously from the master node, but does not support read/
write operations. If the master node fails, the standby node
automatically becomes the master node.

Memory Specification of single-node or master/standby DCS Memcached
instances: 2 GB, 4 GB, 8 GB, 16 GB, 32 GB, and 64 GB.

HA and
DR

Master/Standby DCS Memcached instances can be deployed across
AZs in the same region with physically isolated power supplies and
networks.

For more information about open-source Memcached, visit https://
memcached.org/.

1.2 Application Scenarios

Redis Application Scenarios
Many large-scale e-commerce websites and video streaming and gaming
applications require fast access to large amounts of data that has simple data
structures and does not need frequent join queries. In such scenarios, you can use

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 3

https://redis.io/
https://memcached.org/
https://memcached.org/

Redis to achieve fast yet inexpensive access to data. Redis enables you to retrieve
data from in-memory data stores instead of relying entirely on slower disk-based
databases. In addition, you no longer need to perform additional management
tasks. These features make Redis an important supplement to traditional disk-
based databases and a basic service essential for internet applications receiving
high-concurrency access.

Typical application scenarios of DCS for Redis are as follows:

1. E-commerce flash sales
E-commerce product catalogue, deals, and flash sales data can be cached to
Redis.
For example, the high-concurrency data access in flash sales can be hardly
handled by traditional relational databases. It requires the hardware to have
higher configuration such as disk I/O. By contrast, Redis supports 100,000 QPS
per node and allows you to implement locking using simple commands such
as SET, GET, DEL, and RPUSH to handle flash sales.

2. Live video commenting
In live streaming, online user, gift ranking, and bullet comment data can be
stored as sorted sets in Redis.
For example, bullet comments can be returned using the
ZREVRANGEBYSCORE command. The ZPOPMAX and ZPOPMIN commands
in Redis 5.0 can further facilitate message processing.

3. Game leaderboard
In online gaming, the highest ranking players are displayed and updated in
real time. The leaderboard ranking can be stored as sorted sets, which are
easy to use with up to 20 commands.

4. Social networking comments
In web applications, queries of post comments often involve sorting by time in
descending order. As comments pile up, sorting becomes less efficient.
By using lists in Redis, a preset number of comments can be returned from
the cache, rather than from disk, easing the load off the database and
accelerating application responses.

Memcached Application Scenarios
Memcached is suitable for storing simple key-value data.

1. Web pages
Caching static data such as HTML pages, Cascading Style Sheets (CSS), and
images to DCS Memcached instances improves access performance of web
pages.

2. Frontend database
In dynamic systems such as social networking and blogging sites, write
operations are far fewer than read operations such as querying users, friends,
and articles. Such frequently access data can be cached in Memcached to
reduce database load and improve performance.
The following data can be cached:
– Frequently accessed data that does not require real-time updates and can

expire automatically

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 4

Example: latest article lists and rankings. Although data is generated
constantly, its impact on user experience is limited. Such data can be
cached for a preset period of time and accessed from the database after
this period. If web page editors want to view the latest ranking, a cache
clearing or refreshing policy can be configured.

– Frequently accessed data that requires real-time updates
Example: friend lists, article lists, and reading records. Such data can be
cached to Memcached first, and then updated whenever changes
(adding, modifying, and deleting data) occur.

3. Flash sales
It is difficult for traditional databases to write an order placement operation
during flash sales into the database, modify the inventory data, and ensure
transaction consistency while ensuring uninterrupted user experience.
Memcached incr and decr commands can be used to store inventory
information and complete order placement in memory. Once an order is
submitted, an order number is generated. Then, the order can be paid.

NO TE

Scenarios where Memcached is not suitable:

● The size of a single cache object is larger than 1 MB.

Memcached cannot cache an object larger than 1 MB. In such cases, use Redis.

● The key contains more than 250 characters.

To use Memcached in such a scenario, you can generate an MD5 hash for the key and
cache the hash instead.

● High data reliability is required.

Open-source Memcached does not provide data replication, backup, and migration, so
data persistence is not supported.

Master/Standby DCS Memcached instances support data persistence. For more
information, contact technical support.

● Complex data structures and processing are required.

Memcached supports only simple key-value pairs, and does not support complex data
structures such as lists and sets, or complex operations such as sorting.

1.3 DCS Instance Types

1.3.1 Single-Node Redis
Three Redis versions are available for single-node DCS Redis instances: Redis 3.0,
Redis 4.0, and Redis 5.0.

Features
1. Low system overhead and high QPS

Single-node instances do not support data synchronization or data
persistence, reducing system overhead and supporting higher concurrency.
QPS of single-node DCS Redis instances reaches up to 100,000.

2. Process monitoring and automatic fault recovery

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 5

With an HA monitoring mechanism, if a single-node DCS instance becomes
faulty, a new process is started within 30 seconds to resume service
provisioning.

3. Out-of-the-box usability and no data persistence
Single-node DCS instances can be used out of the box because they do not
involve data loading. If your service requires high QPS, you can warm up the
data beforehand to avoid strong concurrency impact on the backend
database.

4. Low-cost and suitable for development and testing
Single-node instances are 40% cheaper than master/standby DCS instances,
suitable for setting up development or testing environments.

In summary, single-node DCS instances support highly concurrent read/write
operations, but do not support data persistence. Data will be deleted after
instances are restarted. They are suitable for scenarios which do not require data
persistence, such as database front-end caching, to accelerate access and ease the
concurrency load off the backend. If the desired data does not exist in the cache,
requests will go to the database. When restarting the service or the DCS instance,
you can pre-generate cache data from the disk database to relieve pressure on the
backend during startup.

Architecture
Figure 1-1 shows the architecture of single-node DCS Redis instances.

NO TE

To access a DCS Redis 3.0 instance, you must use port 6379. To access a DCS Redis 4.0 or
5.0 instance, you can customize the port. If no port is specified, the default port 6379 will
be used. In the following architecture, port 6379 is used. If you have customized a port,
replace 6379 with the actual port.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 6

Figure 1-1 Single-node DCS Redis instance architecture

Architecture description:

● VPC
All server nodes of the instance run in the same VPC.

NO TE

For intra-VPC access, the client and the instance must be in the same VPC with
specified security group rule configurations.

For details, see Security Group Configurations.

● Application
The client of the instance, which is the application running on an Elastic Cloud
Server (ECS).
DCS Redis instances are compatible with the Redis protocol, and can be
accessed through open-source clients. For details about accessing DCS
instances, see Accessing an Instance.

● DCS instance
A single-node DCS instance, which has only one node and one Redis process.
DCS monitors the availability of the instance in real time. If the Redis process
becomes faulty, DCS starts a new process to resume service provisioning.

1.3.2 Master/Standby Redis
Both DCS for Redis and DCS for Memcached support the master/standby instance
type. This section describes master/standby DCS Redis instances. Three Redis

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 7

versions are available for master/standby DCS Redis instances: Redis 3.0, Redis 4.0,
and Redis 5.0.

NO TE

You cannot upgrade the Redis version for an instance. For example, a master/standby DCS
Redis 3.0 instance cannot be upgraded to a master/standby DCS Redis 4.0 or 5.0 instance. If
your service requires the features of higher Redis versions, create a DCS Redis instance of a
higher version and then migrate data from the old instance to the new one.

Features
Master/Standby DCS instances have higher availability and reliability than single-
node DCS instances.

Master/Standby DCS instances have the following features:

1. Data persistence and high reliability
By default, data persistence is enabled by both the master and the standby
node of a master/standby instance.
The standby node of a DCS Redis instance is invisible to you. Only the master
node provides data read/write operations.

2. Data synchronization
Data in the master and standby nodes is kept consistent through incremental
synchronization.

NO TE

After recovering from a network exception or node fault, master/standby instances
perform a full synchronization to ensure data consistency.

3. Automatic master/standby switchover
If the master node becomes faulty, the standby node takes over within 30
seconds, without requiring any service interruptions or manual operations.

4. DR policies
Each master/standby instance can be deployed across AZs with physically
isolated power supplies and networks. Applications can also be deployed
across AZs to achieve high availability for both data and applications.

Architecture
Figure 1-2 shows the architecture of master/standby DCS Redis instances.

NO TE

To access a DCS Redis 3.0 instance, you must use port 6379. To access a DCS Redis 4.0 or
5.0 instance, you can customize the port. If no port is specified, the default port 6379 will
be used. In the following architecture, port 6379 is used. If you have customized a port,
replace 6379 with the actual port.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 8

Figure 1-2 Master/Standby DCS instance architecture

Architecture description:

● VPC
All server nodes of the instance run in the same VPC.

NO TE

For intra-VPC access, the client and the instance must be in the same VPC with
specified security group rule configurations.

For details, see Security Group Configurations.

● Application
The Redis client of the instance, which is the application running on the ECS.
DCS Redis instances are compatible with the Redis protocol, and can be
accessed through open-source clients. For details about accessing DCS
instances, see Accessing an Instance.

● DCS instance
Indicates a master/standby DCS instance which has a master node and a
standby node. By default, data persistence is enabled and data is synchronized
between the two nodes.
DCS monitors the availability of the instance in real time. If the master node
becomes faulty, the standby node becomes the master node and resumes
service provisioning.
DCS Redis instances are accessed through port 6379 by default.

1.3.3 Proxy Cluster Redis
DCS provides two types of cluster Redis instances: Proxy Cluster and Redis Cluster.
Proxy Cluster uses Linux Virtual Server (LVS) and proxies. Redis Cluster is the
native distributed implementation of Redis. Proxy Cluster instances are compatible
with Redis 3.0, while Redis Cluster instances are compatible with Redis 4.0 and 5.0.

This section describes Proxy Cluster DCS Redis 3.0 instances.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 9

NO TE

● A Proxy Cluster instance can be connected in the same way that a single-node or
master/standby instance is connected, without any special settings on the client. You
can use the IP address or domain name of the instance, and do not need to know or use
the proxy or shard addresses.

Proxy Cluster DCS Redis 3.0 Instances
Proxy Cluster DCS Redis 3.0 instances are compatible with codis. The specifications
range from 64 GB to 1024 GB, meeting requirements for millions of concurrent
connections and massive data cache. Distributed data storage and access is
implemented by DCS, without requiring development or maintenance.

Each Proxy Cluster instance consists of load balancers, proxies, cluster managers,
and shards.

Table 1-3 Specifications of Proxy Cluster DCS Redis 3.0 instances

Total Memory Proxies Shards

64 GB 3 8

128 GB 6 16

256 GB 8 32

Figure 1-3 Proxy Cluster DCS Redis instance architecture

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 10

https://github.com/CodisLabs/codis

Architecture description:

● VPC
All server nodes of the instance run in the same VPC.

NO TE

For intra-VPC access, the client and the instance must be in the same VPC with
specified security group rule configurations.

For details, see Security Group Configurations.

● Application
The client used to access the instance.
DCS Redis instances can be accessed through open-source clients. For details
about accessing DCS instances, see Accessing an Instance.

● LB-M/LB-S
The load balancers, which are deployed in master/standby HA mode. The
connection addresses (IP address:Port) of the cluster DCS Redis instance are
the addresses of the load balancers.

● Proxy
The proxy server used to achieve high availability and process high-
concurrency client requests.
You can connect to a Proxy Cluster instance at the IP addresses of its proxies.

● Redis shard
A shard of the cluster.
Each shard consists of a pair of master/standby nodes. If the master node
becomes faulty, the standby node automatically takes over cluster services.
If both the master and standby nodes of a shard are faulty, the cluster can
still provide services but the data on the faulty shard is inaccessible.

● Cluster manager
The cluster configuration managers, which store configurations and
partitioning policies of the cluster. You cannot modify the information about
the configuration managers.

1.3.4 Redis Cluster
DCS provides two types of cluster Redis instances: Proxy Cluster and Redis Cluster.
Proxy Cluster uses Linux Virtual Server (LVS) and proxies. Redis Cluster is the
native distributed implementation of Redis. Proxy Cluster instances are compatible
with Redis 3.0, while Redis Cluster instances are compatible with Redis 4.0 and 5.0.

This section describes Redis Cluster DCS Redis 4.0 and 5.0 instances.

Redis Cluster DCS Redis 4.0 and 5.0 Instances

The Redis Cluster instance type provided by DCS is compatible with the native
Redis Cluster, which uses smart clients and a distributed architecture to perform
sharding.

Table 1-4 lists the shard specification for different instance specifications.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 11

https://redis.io/topics/cluster-spec
https://redis.io/topics/cluster-spec

Specification per shard=Instance specification/Number of shards. For example,
if a 48 GB instance has 6 shards, the specification of each shard is 48 GB/6 = 8 GB.

Table 1-4 Specifications of Redis Cluster DCS instances

Total Memory Shards

4 GB/8 GB/16 GB/24 GB/32 GB 3

48 GB 6

64 GB 8

96 GB 12

128 GB 16

192 GB 24

256 GB 32

384 GB 48

512 GB 64

768 GB 96

1024 GB 128

● Distributed architecture
Any node in a Redis Cluster can receive requests. Received requests are then
redirected to the right node for processing. Each node consists of a subset of
one master and one (by default) or multiple replicas. The master or replica
roles are determined through an election algorithm.

Figure 1-4 Distributed architecture of Redis Cluster

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 12

● Presharding
There are 16,384 hash slots in each Redis Cluster. The mapping between hash
slots and Redis nodes is stored in Redis Servers. To compute what is the hash
slot of a given key, simply take the CRC16 of the key modulo 16384. Example
command output

Figure 1-5 Redis Cluster presharding

1.3.5 Single-Node Memcached
This section describes the features and architecture of single-node DCS
Memcached instances.

Features
1. Low system overhead and high QPS

Single-node instances do not support data synchronization or data
persistence, reducing system overhead and supporting higher concurrency.
QPS of single-node DCS Memcached instances reaches up to 100,000.

2. Process monitoring and automatic fault recovery
With an HA monitoring mechanism, if a single-node DCS instance becomes
faulty, a new process is started within 30 seconds to resume service
provisioning.

3. Out-of-the-box usability and no data persistence
Single-node DCS instances can be used out of the box because they do not
involve data loading. If your service requires high QPS, you can warm up the
data beforehand to avoid strong concurrency impact on the backend
database.

4. Low-cost and suitable for development and testing
Single-node instances are 40% cheaper than master/standby DCS instances,
suitable for setting up development or testing environments.

In summary, single-node DCS instances support highly concurrent read/write
operations, but do not support data persistence. Data will be deleted after

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 13

instances are restarted. They are suitable for scenarios which do not require data
persistence, such as database front-end caching, to accelerate access and ease the
concurrency load off the backend. If the desired data does not exist in the cache,
requests will go to the database. When restarting the service or the DCS instance,
you can pre-generate cache data from the disk database to relieve pressure on the
backend during startup.

Architecture
Figure 1-6 shows the architecture of single-node DCS Memcached instances.

Figure 1-6 Single-node DCS instance architecture

Architecture description:

● VPC
The VPC where all nodes of the instance are run.

NO TE

For intra-VPC access, the client and the instance must be in the same VPC with
specified security group rule configurations.
For details, see Security Group Configurations.

● Application
The client of the instance, which is the application running on an Elastic Cloud
Server (ECS).
DCS Memcached instances are compatible with the Memcached protocol, and
can be accessed through open-source clients. For examples of accessing DCS
instances, see Accessing a DCS Memcached Instance.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 14

● DCS instance
A single-node DCS instance, which has only one node and one Memcached
process.
DCS monitors the availability of the instance in real time. If the Memcached
process becomes faulty, DCS starts a new process to resume service
provisioning.
Use port 11211 to access a DCS Memcached instance.

1.3.6 Master/Standby Memcached
This section describes master/standby DCS Memcached instances.

Features
Master/Standby instances have higher availability and reliability than single-node
instances.

Master/Standby DCS Memcached instances have the following features:

1. Data persistence and high reliability
By default, data persistence is enabled by both the master and the standby
node of a master/standby DCS Memcached instance. In addition, data
persistence is supported to ensure high data reliability.
The standby node of a DCS Memcached instance is invisible to you. Only the
master node provides data read/write operations.

2. Data synchronization
Data in the master and standby nodes is kept consistent through incremental
synchronization.

NO TE

After recovering from a network exception or node fault, master/standby instances
perform a full synchronization to ensure data consistency.

3. Automatic master/standby switchover
If the master node becomes faulty, the standby node takes over within 30
seconds, without requiring any service interruptions or manual operations.

4. Multiple DR policies
Each master/standby instance can be deployed across AZs with physically
isolated power supplies and networks. Applications can also be deployed
across AZs to achieve HA for both data and applications.

Architecture of Master/Standby DCS Memcached Instances
Figure 1-7 shows the architecture of master/standby DCS Memcached instances.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 15

Figure 1-7 Master/Standby DCS Memcached instance architecture

Architecture description:

● VPC
The VPC where all nodes of the instance are run.

NO TE

For intra-VPC access, the client and the instance must be in the same VPC with
specified security group rule configurations.
For details, see Security Group Configurations.

● Application
The Memcached client of the instance, which is the application running on
the ECS.
DCS Memcached instances are compatible with the Memcached protocol, and
can be accessed through open-source clients. For examples of accessing DCS
instances, see Accessing a DCS Memcached Instance.

● DCS instance
Indicates a master/standby DCS instance which has a master node and a
standby node. By default, data persistence is enabled and data is synchronized
between the two nodes.
DCS monitors the availability of the instance in real time. If the master node
becomes faulty, the standby node becomes the master node and resumes
service provisioning.
Use port 11211 to access a DCS Memcached instance.

1.4 DCS Instance Specifications

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 16

1.4.1 Redis 3.0 Instance Specifications
This section describes DCS Redis 3.0 instance specifications, including the total
memory, available memory, maximum number of connections allowed, maximum/
assured bandwidth, and reference performance.

The following metrics are related to the instance specifications:

● Used memory: You can check the memory usage of an instance by viewing
the Memory Usage and Used Memory metrics.

● Maximum connections: The maximum number of connections allowed is the
maximum number of clients that can be connected to an instance. To check
the number of connections to an instance, view the Connected Clients
metric.

● QPS represents queries per second, which is the number of commands
processed per second.

NO TE

● Single-node, master/standby, and Proxy Cluster types are available.

● Only the x86 architecture is supported. The Arm architecture is not supported.

Single-Node Instances
For each single-node DCS Redis instance, the available memory is less than the
total memory because some memory is reserved for system overheads, as shown
in the following table.

Table 1-5 Specifications of single-node DCS Redis 3.0 instances

Total
Memory
(GB)

Available
Memory
(GB)

Max.
Connections
(Default/
Limit)
(Count)

Assured/
Maximum
Bandwidth
(Mbit/s)

Reference
Performance
(QPS)

2 1.5 5000/50,000 42/512 50,000

4 3.2 5000/50,000 64/1536 100,000

8 6.8 5000/50,000 64/1536 100,000

16 13.6 5000/50,000 85/3072 100,000

32 27.2 5000/50,000 85/3072 100,000

64 58.2 5000/60,000 128/5120 100,000

Master/Standby Instances
For each master/standby DCS Redis instance, the available memory is less than
that of a single-node DCS Redis instance because some memory is reserved for
data persistence, as shown in the following table. The available memory of a

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 17

master/standby instance can be adjusted to support background tasks such as
data persistence and master/standby synchronization.

Table 1-6 Specifications of master/standby DCS Redis 3.0 instances

Total
Memory
(GB)

Available
Memory
(GB)

Max.
Connections
(Default/
Limit)
(Count)

Assured/
Maximum
Bandwidth
(Mbit/s)

Reference
Performance
(QPS)

2 1.5 5000/50,000 42/512 50,000

4 3.2 5000/50,000 64/1536 100,000

8 6.4 5000/50,000 64/1536 100,000

16 12.8 5000/50,000 85/3072 100,000

32 25.6 5000/50,000 85/3072 100,000

64 51.2 5000/60,000 128/5120 100,000

Proxy Cluster Instances
In addition to larger memory, cluster instances feature more connections allowed,
higher bandwidth allowed, and more QPS than single-node and master/standby
instances.

Table 1-7 Specifications of Proxy Cluster DCS Redis 3.0 instances

Specificati
on
(GB)

Available
Memory
(GB)

Max.
Connections
(Default/
Limit)
(Count)

Assured/
Maximum
Bandwidth
(Mbit/s)

Reference
Performance
(QPS)

64 64 90,000/90,000 600/5120 500,000

128 128 180,000/180,00
0

600/5120 500,000

256 256 240,000/240,00
0

600/5120 500,000

1.4.2 Redis 4.0 and 5.0 Instance Specifications
This section describes DCS Redis 4.0 and 5.0 instance specifications, including the
total memory, available memory, maximum number of connections allowed,
maximum/assured bandwidth, and reference performance.

The following metrics are related to the instance specifications:

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 18

● Used memory: You can check the memory usage of an instance by viewing
the Memory Usage and Used Memory metrics.

● Maximum connections: The maximum number of connections allowed is the
maximum number of clients that can be connected to an instance. To check
the number of connections to an instance, view the Connected Clients
metric.

● QPS represents queries per second, which is the number of commands
processed per second.

● Bandwidth: You can view the Flow Control Times metric to check whether
the bandwidth has exceeded the limit.

NO TE

● Single-node, master/standby, and Redis Cluster types are available.
● Only the x86 architecture is supported. The Arm architecture is not supported.

Single-Node Instances

Table 1-8 Specifications of single-node DCS Redis 4.0 or 5.0 instances

Total
Memory
(GB)

Available
Memory
(GB)

Max.
Connections
(Default/
Limit)
(Count)

Assured/
Maximum
Bandwidth
(Mbit/s)

Referen
ce
Perform
ance
(QPS)

Specificat
ion Code
(spec_cod
e in the
API)

1 1 10,000/50,000 80/80 80,000 x86:
redis.singl
e.xu1.larg
e.1
Arm:
redis.singl
e.au1.larg
e.1

2 2 10,000/50,000 128/128 80,000 x86:
redis.singl
e.xu1.larg
e.2
Arm:
redis.singl
e.au1.larg
e.2

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 19

Total
Memory
(GB)

Available
Memory
(GB)

Max.
Connections
(Default/
Limit)
(Count)

Assured/
Maximum
Bandwidth
(Mbit/s)

Referen
ce
Perform
ance
(QPS)

Specificat
ion Code
(spec_cod
e in the
API)

4 4 10,000/50,000 192/192 80,000 x86:
redis.singl
e.xu1.larg
e.4
Arm:
redis.singl
e.au1.larg
e.4

8 8 10,000/50,000 192/192 100,000 x86:
redis.singl
e.xu1.larg
e.8
Arm:
redis.singl
e.au1.larg
e.8

16 16 10,000/50,000 256/256 100,000 x86:
redis.singl
e.xu1.larg
e.16
Arm:
redis.singl
e.au1.larg
e.16

24 24 10,000/50,000 256/256 100,000 x86:
redis.singl
e.xu1.larg
e.24
Arm:
redis.singl
e.au1.larg
e.24

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 20

Total
Memory
(GB)

Available
Memory
(GB)

Max.
Connections
(Default/
Limit)
(Count)

Assured/
Maximum
Bandwidth
(Mbit/s)

Referen
ce
Perform
ance
(QPS)

Specificat
ion Code
(spec_cod
e in the
API)

32 32 10,000/50,000 256/256 100,000 x86:
redis.singl
e.xu1.larg
e.32
Arm:
redis.singl
e.au1.larg
e.32

48 48 10,000/50,000 256/256 100,000 x86:
redis.singl
e.xu1.larg
e.48
Arm:
redis.singl
e.au1.larg
e.48

64 64 10,000/50,000 384/384 100,000 x86:
redis.singl
e.xu1.larg
e.64
Arm:
redis.singl
e.au1.larg
e.64

Master/Standby Instances
The following table lists the x86 and Arm specification codes (spec_code) when
there are two default replicas. Change the replica quantity in the specification
codes based on the actual number of replicas. For example, if an 8 GB master/
standby x86-based instance has two replicas, its specification code is
redis.ha.xu1.large. r2.8. If it has three replicas, its specification code is
redis.ha.xu1.large. r3.8.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 21

Table 1-9 Specifications of master/standby DCS Redis 4.0 or 5.0 instances

Total
Memory
(GB)

Available
Memory
(GB)

Max.
Connectio
ns
(Default/
Limit)
(Count)

Assured/
Maximum
Bandwidth
(Mbit/s)

Referenc
e
Perform
ance
(QPS)

Specificatio
n Code
(spec_code
in the API)

1 1 10,000/50,
000

80/80 80,000 x86:
redis.ha.xu1.
large.r2.1
Arm:
redis.ha.au1.
large.r2.1

2 2 10,000/50,
000

128/128 80,000 x86:
redis.ha.xu1.
large.r2.2
Arm:
redis.ha.au1.
large.r2.2

4 4 10,000/50,
000

192/192 80,000 x86:
redis.ha.xu1.
large.r2.4
Arm:
redis.ha.au1.
large.r2.4

8 8 10,000/50,
000

192/192 100,000 x86:
redis.ha.xu1.
large.r2.8
Arm:
redis.ha.au1.
large.r2.8

16 16 10,000/50,
000

256/256 100,000 x86:
redis.ha.xu1.
large.r2.16
Arm:
redis.ha.au1.
large.r2.16

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 22

Total
Memory
(GB)

Available
Memory
(GB)

Max.
Connectio
ns
(Default/
Limit)
(Count)

Assured/
Maximum
Bandwidth
(Mbit/s)

Referenc
e
Perform
ance
(QPS)

Specificatio
n Code
(spec_code
in the API)

24 24 10,000/50,
000

256/256 100,000 x86:
redis.ha.xu1.
large.r2.24
Arm:
redis.ha.au1.
large.r2.24

32 32 10,000/50,
000

256/256 100,000 x86:
redis.ha.xu1.
large.r2.32
Arm:
redis.ha.au1.
large.r2.32

48 48 10,000/50,
000

256/256 100,000 x86:
redis.ha.xu1.
large.r2.48
Arm:
redis.ha.au1.
large.r2.48

64 64 10,000/50,
000

384/384 100,000 x86:
redis.ha.xu1.
large.r2.64
Arm:
redis.ha.au1.
large.r2.64

Redis Cluster Instances
In addition to larger memory, Redis Cluster instances feature more connections
allowed, higher bandwidth allowed, and more QPS than single-node and master/
standby instances.

The following table lists the x86 and Arm specification codes (spec_code) when
there are two default replicas. Change the replica quantity in the specification
codes based on the actual number of replicas. For example, if an 8 GB x86-based
instance has two replicas, its specification code is redis.cluster.xu1.large.r2.8. If it
has three replicas, its specification code is redis.cluster.xu1.large.r3.8.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 23

Table 1-10 Specifications of Redis Cluster DCS Redis 4.0 or 5.0 instances

Total
Memory
(GB)

Available
Memory
(GB)

Shards
(Maste
r
Nodes)

Max.
Connecti
ons
(Default
/Limit)
(Count)

Assured/
Maximum
Bandwidth
(Mbit/s)

Referen
ce
Perform
ance
(QPS)

Specific
ation
Code
(spec_c
ode in
the
API)

4 4 3 30,000
/150,000

2304/2304 240,000 x86:
redis.cl
uster.xu
1.large.
r2.4
Arm:
redis.cl
uster.au
1.large.
r2.4

8 8 3 30,000
/150,000

2304/2304 240,000 x86:
redis.cl
uster.xu
1.large.
r2.8
Arm:
redis.cl
uster.au
1.large.
r2.8

16 16 3 30,000
/150,000

2304/2304 240,000 x86:
redis.cl
uster.xu
1.large.
r2.16
Arm:
redis.cl
uster.au
1.large.
r2.16

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 24

Total
Memory
(GB)

Available
Memory
(GB)

Shards
(Maste
r
Nodes)

Max.
Connecti
ons
(Default
/Limit)
(Count)

Assured/
Maximum
Bandwidth
(Mbit/s)

Referen
ce
Perform
ance
(QPS)

Specific
ation
Code
(spec_c
ode in
the
API)

32 32 3 30,000
/150,000

2304/2304 300,000 x86:
redis.cl
uster.xu
1.large.
r2.32
Arm:
redis.cl
uster.au
1.large.
r2.32

64 64 8 80,000
/400,000

6144/6144 500,000 x86:
redis.cl
uster.xu
1.large.
r2.64
Arm:
redis.cl
uster.au
1.large.
r2.64

128 128 16 160,000
/800,000

12,288/12,2
88

1,000,00
0

x86:
redis.cl
uster.xu
1.large.
r2.128
Arm:
redis.cl
uster.au
1.large.
r2.128

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 25

Total
Memory
(GB)

Available
Memory
(GB)

Shards
(Maste
r
Nodes)

Max.
Connecti
ons
(Default
/Limit)
(Count)

Assured/
Maximum
Bandwidth
(Mbit/s)

Referen
ce
Perform
ance
(QPS)

Specific
ation
Code
(spec_c
ode in
the
API)

256 256 32 320,000
/
1,600,00
0

24,576/24,5
76

>
2,000,00
0

x86:
redis.cl
uster.xu
1.large.
r2.256
Arm:
redis.cl
uster.au
1.large.
r2.256

512 512 64 640,000
/
3,200,00
0

49,152/49,1
52

>
2,000,00
0

x86:
redis.cl
uster.xu
1.large.
r2.512
Arm:
redis.cl
uster.au
1.large.
r2.512

1024 1024 128 1,280,00
0
/
6,400,00
0

98,304/98,3
04

>
2,000,00
0

x86:
redis.cl
uster.xu
1.large.
r2.1024
Arm:
redis.cl
uster.au
1.large.
r2.1024

1.4.3 Memcached Instance Specifications
This section describes DCS Memcached instance specifications, including the total
memory, available memory, maximum number of connections allowed, maximum/
assured bandwidth, and reference performance.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 26

Maximum connections: The maximum number of connections allowed is the
maximum number of clients that can be connected to an instance. To check the
number of connections to an instance, view the Connected Clients metric.

QPS represents queries per second, which is the number of commands processed
per second.

NO TE

DCS Memcached instances are available in single-node and master/standby types.

Single-Node Instances

For each single-node DCS Memcached instance, the available memory is less than
the total memory because some memory is reserved for system overheads, as
shown in Table 1-11.

Table 1-11 Specifications of single-node DCS Memcached instances

Total
Memory
(GB)

Available
Memory
(GB)

Max.
Connections
(Default/Limit)
(Count)

Assured/
Maximum
Bandwidth
(Mbit/s)

Reference
Performan
ce
(QPS)

2 1.5 5000/50,000 42/128 50,000

4 3.2 5000/50,000 64/192 100,000

8 6.8 5000/50,000 64/192 100,000

16 13.6 5000/50,000 85/256 100,000

32 27.2 5000/50,000 85/256 100,000

64 58.2 5000/50,000 128/384 100,000

Master/Standby Instances

For each master/standby DCS Memcached instance, the available memory is less
than the total memory because some memory is reserved for data persistence, as
shown in Table 1-12. The available memory of a master/standby instance can be
adjusted to support background tasks such as data persistence and master/
standby synchronization.

Table 1-12 Specifications of master/standby DCS Memcached instances

Total
Memory
(GB)

Available
Memory
(GB)

Max.
Connections
(Default/Limit)
(Count)

Assured/
Maximum
Bandwidth
(Mbit/s)

Reference
Performan
ce
(QPS)

2 1.5 5000/50,000 42/128 50,000

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 27

Total
Memory
(GB)

Available
Memory
(GB)

Max.
Connections
(Default/Limit)
(Count)

Assured/
Maximum
Bandwidth
(Mbit/s)

Reference
Performan
ce
(QPS)

4 3.2 5000/50,000 64/192 100,000

8 6.8 5000/50,000 64/192 100,000

16 13.6 5000/50,000 85/256 100,000

32 27.2 5000/50,000 85/256 100,000

64 58.2 5000/50,000 128/384 100,000

1.5 Command Compatibility

1.5.1 Redis 3.0 Commands
DCS for Redis 3.0 is developed based on Redis 3.0.7 and is compatible with open-
source protocols and commands.

This section describes DCS for Redis 3.0's compatibility with Redis commands,
including supported commands, disabled commands, unsupported scripts and
commands of later Redis versions, and restrictions on command usage. For more
information about the command syntax, visit the Redis official website.

DCS for Redis instances support most Redis commands, which are listed in
Commands Supported by DCS for Redis 3.0. Any client compatible with the
Redis protocol can access DCS.

● For security purposes, some Redis commands are disabled in DCS, as listed in
Commands Disabled by DCS for Redis 3.0.

● Some Redis commands are supported by cluster DCS instances for multi-key
operations in the same slot. For details, see Command Restrictions for
Cluster Instances.

● Some Redis commands have usage restrictions, which are described in Other
Command Usage Restrictions.

Commands Supported by DCS for Redis 3.0
The following lists commands supported by DCS for Redis 3.0.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 28

https://redis.io/commands

NO TE

● Commands available since later Redis versions are not supported by earlier-version
instances. Run a command on redis-cli to check whether it is supported by DCS for
Redis. If the message "(error) ERR unknown command" is returned, the command is not
supported.

● The following commands listed in the tables are not supported by Proxy Cluster
instances:
● List group: BLPOP, BRPOP, and BRPOPLRUSH
● CLIENT commands in the Server group: CLIENT KILL, CLIENT GETNAME, CLIENT

LIST, CLIENT SETNAME, CLIENT PAUSE, and CLIENT REPLY.
● Server group: MONITOR
● Key group: RANDOMKE (for old Proxy Cluster instances)

Table 1-13 Commands supported by DCS Redis 3.0 instances 1

Keys String Hash List Set Sorted Set Server

DEL APPEND HDEL BLPOP SADD ZADD FLUSHALL

DUMP BITCOUN
T

HEXIS
TS

BRPOP SCARD ZCARD FLUSHDB

EXISTS BITOP HGET BRPOP
LRUSH

SDIFF ZCOUNT DBSIZE

EXPIRE BITPOS HGET
ALL

LINDEX SDIFFST
ORE

ZINCRBY TIME

MOVE DECR HINC
RBY

LINSER
T

SINTER ZRANGE INFO

PERSIST DECRBY HINC
RBYF
LOAT

LLEN SINTERS
TORE

ZRANGEBYS
CORE

KEYS

PTTL GET HKEY
S

LPOP SISMEM
BER

ZRANK CLIENT
KILL

RANDO
MKEY

GETRANG
E

HMG
ET

LPUSH
X

SMEMBE
RS

ZREMRANGE
BYRANK

CLIENT
LIST

RENAME GETSET HMSE
T

LRANG
E

SMOVE ZREMRANGE
BYCORE

CLIENT
GETNAME

RENAME
NX

INCR HSET LREM SPOP ZREVRANGE CLIENT
SETNAME

RESTOR
E

INCRBY HSET
NX

LSET SRAND
MEMBE
R

ZREVRANGE
BYSCORE

CONFIG
GET

SORT INCRBYFL
OAT

HVAL
S

LTRIM SREM ZREVRANK MONITOR

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 29

https://redis.io/commands#generic
https://redis.io/commands#string
https://redis.io/commands#hash
https://redis.io/commands#list
https://redis.io/commands#set
https://redis.io/commands#sorted_set
https://redis.io/commands#server

Keys String Hash List Set Sorted Set Server

TTL MGET HSCA
N

RPOP SUNION ZSCORE SLOWLOG

TYPE MSET - RPOPL
PU

SUNION
STORE

ZUNIONSTO
RE

ROLE

SCAN MSETNX - RPOPL
PUSH

SSCAN ZINTERSTOR
E

-

OBJECT PSETEX - RPUSH - ZSCAN -

- SET - RPUSH
X

- ZRANGEBYL
EX

-

- SETBIT - - - - -

- SETEX - - - - -

- SETNX - - - - -

- SETRANG
E

- - - - -

- STRLEN - - - - -

Table 1-14 Commands supported by DCS Redis 3.0 instances 2

HyperLogl
og

Pub/Sub Transacti
ons

Connecti
on

Scripting Geo

PFADD PSUBSCRI
BE

DISCARD AUTH EVAL GEOADD

PFCOUNT PUBLISH EXEC ECHO EVALSHA GEOHASH

PFMERGE PUBSUB MULTI PING SCRIPT
EXISTS

GEOPOS

- PUNSUBS
CRIBE

UNWATC
H

QUIT SCRIPT
FLUSH

GEODIST

- SUBSCRIB
E

WATCH SELECT SCRIPT
KILL

GEORADIUS

- UNSUBSC
RIBE

- - SCRIPT
LOAD

GEORADIUSBY
MEMBER

Commands Disabled by DCS for Redis 3.0
The following lists commands disabled by DCS for Redis 3.0.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 30

https://redis.io/commands#generic
https://redis.io/commands#string
https://redis.io/commands#hash
https://redis.io/commands#list
https://redis.io/commands#set
https://redis.io/commands#sorted_set
https://redis.io/commands#server
https://redis.io/commands#hyperloglog
https://redis.io/commands#hyperloglog
https://redis.io/commands#pubsub
https://redis.io/commands#transactions
https://redis.io/commands#transactions
https://redis.io/commands#connection
https://redis.io/commands#connection
https://redis.io/commands#scripting
https://redis.io/commands#geo

Table 1-15 Redis commands disabled in single-node and master/standby Redis 3.0
instances

Keys Server

MIGRATE SLAVEOF

- SHUTDOWN

- LASTSAVE

- DEBUG commands

- COMMAND

- SAVE

- BGSAVE

- BGREWRITEAOF

Table 1-16 Redis commands disabled in Proxy Cluster Redis 3.0 instances

Keys Server List Transactio
ns

Connecti
on

Cluste
r

codis

MIGRA
TE

SLAVEOF BLPOP DISCARD SELECT CLUST
ER

TIME

MOVE SHUTDO
WN

BRPOP EXEC - - SLOTSINF
O

- LASTSAVE BRPOPL
PUSH

MULTI - - SLOTSDEL

- DEBUG
command
s

- UNWATCH - - SLOTSMG
RTSLOT

- COMMAN
D

- WATCH - - SLOTSMG
RTONE

- SAVE - - - - SLOTSCHE
CK

- BGSAVE - - - - SLOTSMG
RTTAGSLO
T

- BGREWRIT
EAOF

- - - - SLOTSMG
RTTAGON
E

- SYNC - - - - -

- PSYNC - - - - -

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 31

https://redis.io/commands#generic
https://redis.io/commands#server
https://redis.io/commands#generic
https://redis.io/commands#server
https://redis.io/commands#list
https://redis.io/commands#transactions
https://redis.io/commands#transactions
https://redis.io/commands#connection
https://redis.io/commands#connection
https://redis.io/commands#cluster
https://redis.io/commands#cluster

Keys Server List Transactio
ns

Connecti
on

Cluste
r

codis

- MONITOR - - - - -

- CLIENT
command
s

- - - - -

- OBJECT - - - - -

- ROLE - - - - -

1.5.2 Redis 4.0 Commands
DCS for Redis 4.0 is developed based on Redis 4.0.14 and is compatible with open-
source protocols and commands.

This section describes DCS for Redis 4.0's compatibility with Redis commands,
including supported and disabled commands. For more information about the
command syntax, visit the Redis official website.

DCS for Redis instances support most Redis commands, which are listed in
Commands Supported by DCS for Redis 4.0. Any client compatible with the
Redis protocol can access DCS.

● For security purposes, some Redis commands are disabled in DCS, as listed in
Commands Disabled by DCS for Redis 4.0.

● Some Redis commands are supported by cluster DCS instances for multi-key
operations in the same slot. For details, see Command Restrictions for
Cluster Instances.

● Some Redis commands have usage restrictions, which are described in Other
Command Usage Restrictions.

Commands Supported by DCS for Redis 4.0
Table 1-17 and Table 1-18 list the Redis commands supported by single-node,
master/standby, and Redis Cluster DCS Redis 4.0 instances.

NO TE

● Commands available since later Redis versions are not supported by earlier-version
instances. Run a command on redis-cli to check whether it is supported by DCS for
Redis. If the message "(error) ERR unknown command" is returned, the command is not
supported.

● For DCS Redis 4.0 instances in the Redis Cluster mode, ensure that all commands in a
pipeline are executed on the same shard.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 32

https://redis.io/commands#generic
https://redis.io/commands#server
https://redis.io/commands#list
https://redis.io/commands#transactions
https://redis.io/commands#transactions
https://redis.io/commands#connection
https://redis.io/commands#connection
https://redis.io/commands#cluster
https://redis.io/commands#cluster
https://redis.io/commands

Table 1-17 Commands supported by single-node, master/standby, and Redis
Cluster DCS Redis 4.0 instances (1)

Keys String Hash List Set Sorted Set Server

DEL APPEN
D

HDEL BLPOP SADD ZADD FLUSHALL

DUMP BITCOU
NT

HEXIST
S

BRPOP SCARD ZCARD FLUSHDB

EXISTS BITOP HGET BRPOP
LRUSH

SDIFF ZCOUNT DBSIZE

EXPIRE BITPOS HGETAL
L

LINDEX SDIFFST
ORE

ZINCRBY TIME

MOVE DECR HINCRB
Y

LINSER
T

SINTER ZRANGE INFO

PERSIST DECRBY HINCRB
YFLOAT

LLEN SINTERS
TORE

ZRANGEBYS
CORE

KEYS

PTTL GET HKEYS LPOP SISMEM
BER

ZRANK CLIENT
KILL

RANDO
MKEY

GETRA
NGE

HMGET LPUSH
X

SMEMBE
RS

ZREMRANGE
BYRANK

CLIENT
LIST

RENAME GETSET HMSET LRANG
E

SMOVE ZREMRANGE
BYCORE

CLIENT
GETNAME

RENAME
NX

INCR HSET LREM SPOP ZREVRANGE CLIENT
SETNAME

RESTOR
E

INCRBY HSETN
X

LSET SRAND
MEMBE
R

ZREVRANGE
BYSCORE

CONFIG
GET

SORT INCRBY
FLOAT

HVALS LTRIM SREM ZREVRANK MONITOR

TTL MGET HSCAN RPOP SUNION ZSCORE SLOWLOG

TYPE MSET HSTRLE
N

RPOPL
PU

SUNION
STORE

ZUNIONSTO
RE

ROLE

SCAN MSETN
X

HLEN RPOPL
PUSH

SSCAN ZINTERSTOR
E

SWAPDB

OBJECT PSETEX - RPUSH SPOP ZSCAN MEMORY

PEXPIRE SET - RPUSH
X

- ZRANGEBYL
EX

CONFIG

PEXPIRE
AT

SETBIT - LPUSH - ZLEXCOUNT -

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 33

https://redis.io/commands#generic
https://redis.io/commands#string
https://redis.io/commands#hash
https://redis.io/commands#list
https://redis.io/commands#set
https://redis.io/commands#sorted_set
https://redis.io/commands#server

Keys String Hash List Set Sorted Set Server

- SETEX - - - ZREMRANGE
BYSCORE

-

- SETNX - - - ZREM -

- SETRAN
GE

- - - - -

- STRLEN - - - - -

- BITFIEL
D

- - - - -

Table 1-18 Commands supported by single-node, master/standby, and Redis
Cluster DCS Redis 4.0 instances (2)

HyperLogl
og

Pub/Sub Transacti
ons

Connecti
on

Scripting Geo

PFADD PSUBSCRI
BE

DISCARD AUTH EVAL GEOADD

PFCOUNT PUBLISH EXEC ECHO EVALSHA GEOHASH

PFMERGE PUBSUB MULTI PING SCRIPT
EXISTS

GEOPOS

- PUNSUBS
CRIBE

UNWATC
H

QUIT SCRIPT
FLUSH

GEODIST

- SUBSCRIB
E

WATCH SELECT SCRIPT
KILL

GEORADIUS

- UNSUBSC
RIBE

- - SCRIPT
LOAD

GEORADIUSBY
MEMBER

Commands Disabled by DCS for Redis 4.0

The following lists commands disabled by DCS for Redis 4.0.

Table 1-19 Redis commands disabled in single-node and master/standby Redis 4.0
instances

Keys Server

MIGRATE SLAVEOF

- SHUTDOWN

- LASTSAVE

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 34

https://redis.io/commands#generic
https://redis.io/commands#string
https://redis.io/commands#hash
https://redis.io/commands#list
https://redis.io/commands#set
https://redis.io/commands#sorted_set
https://redis.io/commands#server
https://redis.io/commands#hyperloglog
https://redis.io/commands#hyperloglog
https://redis.io/commands#pubsub
https://redis.io/commands#transactions
https://redis.io/commands#transactions
https://redis.io/commands#connection
https://redis.io/commands#connection
https://redis.io/commands#scripting
https://redis.io/commands#geo
https://redis.io/commands#generic
https://redis.io/commands#server

Keys Server

- DEBUG commands

- COMMAND

- SAVE

- BGSAVE

- BGREWRITEAOF

- SYNC

- PSYNC

Table 1-20 Redis commands disabled in Redis Cluster Redis 4.0 instances

Keys Server Cluster

MIGRATE SLAVEOF CLUSTER MEET

- SHUTDOWN CLUSTER FLUSHSLOTS

- LASTSAVE CLUSTER ADDSLOTS

- DEBUG commands CLUSTER DELSLOTS

- COMMAND CLUSTER SETSLOT

- SAVE CLUSTER BUMPEPOCH

- BGSAVE CLUSTER SAVECONFIG

- BGREWRITEAOF CLUSTER FORGET

- SYNC CLUSTER REPLICATE

- PSYNC CLUSTER COUNT-FAILURE-
REPORTS

- - CLUSTER FAILOVER

- - CLUSTER SET-CONFIG-EPOCH

- - CLUSTER RESET

1.5.3 Redis 5.0 Commands
DCS for Redis 5.0 is developed based on Redis 5.0.9 and is compatible with open-
source protocols and commands.

This section describes DCS for Redis 5.0's compatibility with Redis commands,
including supported and disabled commands. For more information about the
command syntax, visit the Redis official website.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 35

https://redis.io/commands#generic
https://redis.io/commands#server
https://redis.io/commands#generic
https://redis.io/commands#server
https://redis.io/commands#cluster
https://redis.io/commands

DCS for Redis instances support most Redis commands. Any client compatible with
the Redis protocol can access DCS.

● For security purposes, some Redis commands are disabled in DCS, as listed in
Commands Disabled by DCS for Redis 5.0.

● Some Redis commands are supported by cluster DCS instances for multi-key
operations in the same slot. For details, see Command Restrictions for
Cluster Instances.

● Some Redis commands have usage restrictions, which are described in Other
Command Usage Restrictions.

Commands Supported by DCS for Redis 5.0
● Table 1-21 and Table 1-22 list commands supported by single-node, master/

standby, and Redis Cluster DCS for Redis 5.0.

NO TE

● Commands available since later Redis versions are not supported by earlier-version
instances. Run a command on redis-cli to check whether it is supported by DCS for
Redis. If the message "(error) ERR unknown command" is returned, the command is not
supported.

● For DCS Redis 5.0 instances in the Redis Cluster mode, ensure that all commands in a
pipeline are executed on the same shard.

Table 1-21 Commands supported by single-node, master/standby, and Redis
Cluster DCS Redis 5.0 instances (1)

Keys String Hash List Set Sorted Set Server

DEL APPEN
D

HDEL BLPOP SADD ZADD FLUSHALL

DUMP BITCOU
NT

HEXIST
S

BRPOP SCARD ZCARD FLUSHDB

EXISTS BITOP HGET BRPOP
LRUSH

SDIFF ZCOUNT DBSIZE

EXPIRE BITPOS HGETAL
L

LINDEX SDIFFST
ORE

ZINCRBY TIME

MOVE DECR HINCRB
Y

LINSER
T

SINTER ZRANGE INFO

PERSIST DECRBY HINCRB
YFLOAT

LLEN SINTERS
TORE

ZRANGEBYS
CORE

KEYS

PTTL GET HKEYS LPOP SISMEM
BER

ZRANK CLIENT
KILL

RANDO
MKEY

GETRA
NGE

HMGET LPUSH
X

SMEMBE
RS

ZREMRANGE
BYRANK

CLIENT
LIST

RENAME GETSET HMSET LRANG
E

SMOVE ZREMRANGE
BYCORE

CLIENT
GETNAME

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 36

https://redis.io/commands#generic
https://redis.io/commands#string
https://redis.io/commands#hash
https://redis.io/commands#list
https://redis.io/commands#set
https://redis.io/commands#sorted_set
https://redis.io/commands#server

Keys String Hash List Set Sorted Set Server

RENAME
NX

INCR HSET LREM SPOP ZREVRANGE CLIENT
SETNAME

RESTOR
E

INCRBY HSETN
X

LSET SRAND
MEMBE
R

ZREVRANGE
BYSCORE

CONFIG
GET

SORT INCRBY
FLOAT

HVALS LTRIM SREM ZREVRANK MONITOR

TTL MGET HSCAN RPOP SUNION ZSCORE SLOWLOG

TYPE MSET HSTRLE
N

RPOPL
PU

SUNION
STORE

ZUNIONSTO
RE

ROLE

SCAN MSETN
X

HLEN RPOPL
PUSH

SSCAN ZINTERSTOR
E

SWAPDB

OBJECT PSETEX - RPUSH SPOP ZSCAN MEMORY

PEXPIRE
AT

SET - RPUSH
X

- ZRANGEBYL
EX

CONFIG

PEXPIRE SETBIT - LPUSH - ZLEXCOUNT -

- SETEX - - - ZPOPMIN -

- SETNX - - - ZPOPMAX -

- SETRAN
GE

- - - ZREMRANGE
BYSCORE

-

- STRLEN - - - ZREM -

- BITFIEL
D

- - - - -

Table 1-22 Commands supported by single-node, master/standby, and Redis
Cluster DCS Redis 5.0 instances (2)

HyperLo
glog

Pub/Su
b

Transac
tions

Connec
tion

Scriptin
g

Geo Stream

PFADD PSUBSC
RIBE

DISCAR
D

AUTH EVAL GEOADD XACK

PFCOUN
T

PUBLIS
H

EXEC ECHO EVALSH
A

GEOHASH XADD

PFMERG
E

PUBSUB MULTI PING SCRIPT
EXISTS

GEOPOS XCLAIM

- PUNSU
BSCRIBE

UNWAT
CH

QUIT SCRIPT
FLUSH

GEODIST XDEL

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 37

https://redis.io/commands#generic
https://redis.io/commands#string
https://redis.io/commands#hash
https://redis.io/commands#list
https://redis.io/commands#set
https://redis.io/commands#sorted_set
https://redis.io/commands#server
https://redis.io/commands#hyperloglog
https://redis.io/commands#hyperloglog
https://redis.io/commands#pubsub
https://redis.io/commands#pubsub
https://redis.io/commands#transactions
https://redis.io/commands#transactions
https://redis.io/commands#connection
https://redis.io/commands#connection
https://redis.io/commands#scripting
https://redis.io/commands#scripting
https://redis.io/commands#geo
https://redis.io/commands#stream

HyperLo
glog

Pub/Su
b

Transac
tions

Connec
tion

Scriptin
g

Geo Stream

- SUBSCR
IBE

WATCH SELECT SCRIPT
KILL

GEORADIUS XGROUP

- UNSUB
SCRIBE

- - SCRIPT
LOAD

GEORADIUS
BYMEMBER

XINFO

- - - - - - XLEN

- - - - - - XPENDING

- - - - - - XRANGE

- - - - - - XREAD

- - - - - - XREADGR
OUP

- - - - - - XREVRANG
E

- - - - - - XTRIM

Commands Disabled by DCS for Redis 5.0
The following lists commands disabled by DCS for Redis 5.0.

Table 1-23 Redis commands disabled in single-node and master/standby Redis 5.0
instances

Keys Server

MIGRATE SLAVEOF

- SHUTDOWN

- LASTSAVE

- DEBUG commands

- COMMAND

- SAVE

- BGSAVE

- BGREWRITEAOF

- SYNC

- PSYNC

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 38

https://redis.io/commands#hyperloglog
https://redis.io/commands#hyperloglog
https://redis.io/commands#pubsub
https://redis.io/commands#pubsub
https://redis.io/commands#transactions
https://redis.io/commands#transactions
https://redis.io/commands#connection
https://redis.io/commands#connection
https://redis.io/commands#scripting
https://redis.io/commands#scripting
https://redis.io/commands#geo
https://redis.io/commands#stream
https://redis.io/commands#generic
https://redis.io/commands#server

Table 1-24 Redis commands disabled in Redis Cluster Redis 5.0 instances

Keys Server Cluster

MIGRATE SLAVEOF CLUSTER MEET

- SHUTDOWN CLUSTER FLUSHSLOTS

- LASTSAVE CLUSTER ADDSLOTS

- DEBUG commands CLUSTER DELSLOTS

- COMMAND CLUSTER SETSLOT

- SAVE CLUSTER BUMPEPOCH

- BGSAVE CLUSTER SAVECONFIG

- BGREWRITEAOF CLUSTER FORGET

- SYNC CLUSTER REPLICATE

- PSYNC CLUSTER COUNT-FAILURE-
REPORTS

- - CLUSTER FAILOVER

- - CLUSTER SET-CONFIG-EPOCH

- - CLUSTER RESET

1.5.4 Web CLI Commands
Web CLI is a command line tool provided on the DCS console. This section
describes Web CLI's compatibility with Redis commands, including supported and
disabled commands. For details about the command syntax, visit the Redis official
website.

Currently, only DCS for Redis 4.0 and 5.0 support Web CLI.

NO TE

● Keys and values cannot contain spaces.

● If the value is empty, nil is returned after the GET command is executed.

Commands Supported by Web CLI

The following lists the commands supported when you use Web CLI.

Table 1-25 Commands supported by Web CLI (1)

Keys String List Set Sorted Set Server

DEL APPEND RPUSH SADD ZADD FLUSHALL

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 39

https://redis.io/commands#generic
https://redis.io/commands#server
https://redis.io/commands#cluster
https://redis.io/commands
https://redis.io/commands
https://redis.io/commands#generic
https://redis.io/commands#string
https://redis.io/commands#list
https://redis.io/commands#set
https://redis.io/commands#sorted_set
https://redis.io/commands#server

Keys String List Set Sorted Set Server

OBJECT BITCOUN
T

RPUSHX SCARD ZCARD FLUSHDB

EXISTS BITOP BRPOPLR
USH

SDIFF ZCOUNT DBSIZE

EXPIRE BITPOS LINDEX SDIFFSTO
RE

ZINCRBY TIME

MOVE DECR LINSERT SINTER ZRANGE INFO

PERSIST DECRBY LLEN SINTERST
ORE

ZRANGEBYSCO
RE

CLIENT KILL

PTTL GET LPOP SISMEMB
ER

ZRANK CLIENT LIST

RANDOM
KEY

GETRAN
GE

LPUSHX SMEMBER
S

ZREMRANGEB
YRANK

CLIENT
GETNAME

RENAME GETSET LRANGE SMOVE ZREMRANGEB
YCORE

CLIENT
SETNAME

RENAMEN
X

INCR LREM SPOP ZREVRANGE CONFIG GET

SCAN INCRBY LSET SRANDME
MBER

ZREVRANGEBY
SCORE

MONITOR

SORT INCRBYFL
OAT

LTRIM SREM ZREVRANK SLOWLOG

TTL MGET RPOP SUNION ZSCORE ROLE

TYPE MSET RPOPLP
U

SUNIONS
TORE

ZUNIONSTORE SWAPDB

- MSETNX RPOPLP
USH

SSCAN ZINTERSTORE MEMORY

- PSETEX - SPOP ZSCAN -

- SET - - ZRANGEBYLEX -

- SETBIT - - ZLEXCOUNT -

- SETEX - - - -

- SETNX - - - -

- SETRANG
E

- - - -

- STRLEN - - - -

- BITFIELD - - - -

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 40

https://redis.io/commands#generic
https://redis.io/commands#string
https://redis.io/commands#list
https://redis.io/commands#set
https://redis.io/commands#sorted_set
https://redis.io/commands#server

Table 1-26 Commands supported by Web CLI (2)

Hash HyperLoglo
g

Connectio
n

Scripting Geo

HDEL PFADD AUTH EVAL GEOADD

HEXISTS PFCOUNT ECHO EVALSHA GEOHASH

HGET PFMERGE PING SCRIPT EXISTS GEOPOS

HGETALL - QUIT SCRIPT FLUSH GEODIST

HINCRBY - - SCRIPT KILL GEORADIUS

HINCRBYFL
OAT

- - SCRIPT LOAD GEORADIUSBYME
MBER

HKEYS - - - -

HMGET - - - -

HMSET - - - -

HSET - - - -

HSETNX - - - -

HVALS - - - -

HSCAN - - - -

HSTRLEN - - - -

Commands Disabled in Web CLI

The following lists the commands disabled when you use Web CLI.

Table 1-27 Redis commands disabled in Web CLI for single-node and master/
standby instances (1)

Keys Server Transactions Pub/Sub

MIGRATE SLAVEOF UNWATCH PSUBSCRIBE

WAIT SHUTDOWN REPLICAOF PUBLISH

DUMP DEBUG commands DISCARD PUBSUB

RESTORE CONFIG SET EXEC PUNSUBSCRIB
E

- CONFIG REWRITE MULTI SUBSCRIBE

- CONFIG RESETSTAT WATCH UNSUBSCRIBE

- SAVE - -

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 41

https://redis.io/commands#hash
https://redis.io/commands#hyperloglog
https://redis.io/commands#hyperloglog
https://redis.io/commands#connection
https://redis.io/commands#connection
https://redis.io/commands#scripting
https://redis.io/commands#geo
https://redis.io/commands#generic
https://redis.io/commands#server
https://redis.io/commands#transactions
https://redis.io/commands#pubsub

Keys Server Transactions Pub/Sub

- BGSAVE - -

- BGREWRITEAOF - -

- COMMAND - -

- KEYS - -

- MONITOR - -

- SYNC - -

- PSYNC - -

- ACL - -

Table 1-28 Redis commands disabled in Web CLI for single-node and master/
standby instances (2)

List Connection Sorted Set

BLPOP SELECT BZPOPMAX

BRPOP - BZPOPMIN

BLMOVE - BZMPOP

BRPOPLPUSH - -

BLMPOP - -

Table 1-29 Redis commands disabled in Web CLI for Redis Cluster instances (1)

Keys Server Transactions Cluster

MIGRATE SLAVEOF UNWATCH CLUSTER MEET

WAIT SHUTDOWN REPLICAOF CLUSTER FLUSHSLOTS

DUMP DEBUG commands DISCARD CLUSTER ADDSLOTS

RESTORE CONFIG SET EXEC CLUSTER DELSLOTS

- CONFIG REWRITE MULTI CLUSTER SETSLOT

- CONFIG RESETSTAT WATCH CLUSTER BUMPEPOCH

- SAVE - CLUSTER SAVECONFIG

- BGSAVE - CLUSTER FORGET

- BGREWRITEAOF - CLUSTER REPLICATE

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 42

https://redis.io/commands#generic
https://redis.io/commands#server
https://redis.io/commands#transactions
https://redis.io/commands#pubsub
https://redis.io/commands#list
https://redis.io/commands#connection
https://redis.io/commands#sorted_set
https://redis.io/commands#generic
https://redis.io/commands#server
https://redis.io/commands#transactions
https://redis.io/commands#cluster

Keys Server Transactions Cluster

- COMMAND - CLUSTER COUNT-
FAILURE-REPORTS

- KEYS - CLUSTER FAILOVER

- MONITOR - CLUSTER SET-CONFIG-
EPOCH

- SYNC - CLUSTER RESET

- PSYNC - -

- ACL - -

Table 1-30 Redis commands disabled in Web CLI for Redis Cluster instances (2)

Pub/Sub List Connection Sorted Set

PSUBSCRIBE BLPOP SELECT BZPOPMAX

PUBLISH BRPOP - BZPOPMIN

PUBSUB BLMOVE - BZMPOP

PUNSUBSCRIBE BRPOPLPUSH - -

SUBSCRIBE BLMPOP - -

UNSUBSCRIBE - - -

1.5.5 Memcached Commands
Memcached supports the TCP-based text protocol and binary protocol. Any clients
compatible with a Memcached protocol can access DCS instances.

Memcached Text Protocol
The Memcached text protocol uses ASCII text to transfer commands, which helps
you compile clients and debug problems. DCS Memcached instances can even be
directly connected using Telnet.

Compared with the Memcached binary protocol, the Memcached text protocol is
compatible with more open-source clients, but the text protocol does not support
authentication.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 43

https://redis.io/commands#generic
https://redis.io/commands#server
https://redis.io/commands#transactions
https://redis.io/commands#cluster
https://redis.io/commands#pubsub
https://redis.io/commands#list
https://redis.io/commands#connection
https://redis.io/commands#sorted_set

NO TE

Clients can use the Memcached text protocol to access DCS Memcached instances only if
password-free access is enabled. Password-free access means that access to DCS
Memcached instances will not be username- and password-protected, and any Memcached
clients that satisfy security group rules in the same VPC can access the instances. Enabling
password-free access poses security risks. Exercise caution when enabling password-free
access.

Table 1-31 lists the commands supported by the Memcached text protocol and
describes whether these commands are supported by DCS Memcached instances.

Table 1-31 Commands supported by the Memcached text protocol

Command Function Supported
by DCS

add Adding data Yes

set Sets data, including adding or modifying
data.

Yes

replace Replaces data. Yes

append Adds data after the value of the specified
key.

Yes

prepend Adds data before the value of a specified
key.

Yes

cas Checks and set data. Yes

get Queries data. Yes

gets Queries data details. Yes

delete Deletes data. Yes

incr Adds the specified amount to the requested
counter.

Yes

decr Removes the specified amount to the
requested counter.

Yes

touch Updates the expiration time of existing
data.

Yes

quit Closes the connection. Yes

flush_all Clearing DCS instance data
NOTE

The value of the delay option (if any) must be 0.

Yes

version Queries Memcached version information. Yes

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 44

Command Function Supported
by DCS

stats Manages operation statistics.
NOTE

Currently, only basic statistics can be queried.
Commands on optional parameters cannot be
queried.

Yes

cache_memlimit Adjusts the cache memory limit. No

slabs Queries usage of internal storage
structures.

No

lru Manages policies of deleting expired data. No

lru_crawler Manages threads of deleting expired data. No

verbosity Sets the verbosity level of the logging
output.

No

watch Inspects what's going on internally. No

Memcached Binary Protocol

The Memcached binary protocol encodes commands and operations into specific
structures before sending them. Commands are represented by predefined
character strings.

The Memcached binary protocol provides more features but fewer clients than the
Memcached text protocol. The Memcached binary protocol is more secure than
the Memcached text protocol as it additionally supports simple authentication and
security layer (SASL) authentication.

Table 1-32 lists the commands supported by the Memcached binary protocol and
describes whether these commands are supported by DCS Memcached instances.

Table 1-32 Commands supported by the Memcached binary protocol

Comman
d Code

Command Function Supported
by DCS

0x00 GET Queries data. Yes

0x01 SET Sets data, including adding or
modifying data.

Yes

0x02 ADD Adding data Yes

0x03 REPLACE Replaces data. Yes

0x04 DELETE Deletes data. Yes

0x05 INCREMENT Adds the specified amount to the
requested counter.

Yes

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 45

Comman
d Code

Command Function Supported
by DCS

0x06 DECREMEN
T

Removes the specified amount to the
requested counter.

Yes

0x07 QUIT Closes the connection. Yes

0x08 FLUSH Clearing DCS instance data
NOTE

The value of the delay option (if any)
must be 0.

Yes

0x09 GETQ Queries data. The client will not
receive any response in case of failure.

Yes

0x0a NOOP No-operation instruction, equivalent
to ping.

Yes

0x0b VERSION Queries Memcached version
information.

Yes

0x0c GETK Queries data and adds a key into the
response packet.

Yes

0x0d GETKQ Queries data and returns a key. The
client will not receive any response in
case of failure.

Yes

0x0e APPEND Adds data after the value of the
specified key.

Yes

0x0f PREPEND Adds data before the value of a
specified key.

Yes

0x10 STAT Queries statistics of DCS Memcached
instances.
NOTE

Currently, only basic statistics can be
queried. Commands on optional
parameters cannot be queried.

Yes

0x11 SETQ Sets data, including adding or
modifying data.
The SETQ command only returns a
response on failures. The client will
not receive any response in the case of
success.

Yes

0x12 ADDQ Adds data. The client will not receive
any response in the case of success.

Yes

0x13 REPLACEQ Replaces data. The client will not
receive any response in the case of
success.

Yes

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 46

Comman
d Code

Command Function Supported
by DCS

0x14 DELETEQ Deletes data. The client will not
receive any response in the case of
success.

Yes

0x15 INCREMENT
Q

Adds the specified amount to the
requested counter. The client will not
receive any response in the case of
success.

Yes

0x16 DECREMEN
TQ

Removes the specified amount to the
requested counter. The client will not
receive any response in the case of
success.

Yes

0x17 QUITQ Closes the connection. Yes

0x18 FLUSHQ Clears data and returns no
information.
NOTE

The value of the delay option (if any)
must be 0.

Yes

0x19 APPENDQ Adds data after the value of the
specified key. The client will not
receive any response in the case of
success.

Yes

0x1a PREPENDQ Adds data before the value of a
specified key. The client will not
receive any response in the case of
success.

Yes

0x1c TOUCH Updates the expiration time of
existing data.

Yes

0x1d GAT Queries data and updates the
expiration time of existing data.

Yes

0x1e GATQ Queries data and returns a key. The
client will not receive any response in
case of failure.

Yes

0x23 GATK Queries data, adds a key into the
response packet, and updates the
expiration time of existing data.

Yes

0x24 GATKQ Queries data, returns a key, and
updates the expiration time of existing
data. The client will not receive any
response in case of failure.

Yes

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 47

Comman
d Code

Command Function Supported
by DCS

0x20 SASL_LIST_
MECHS

Asks the server what SASL
authentication mechanisms it
supports.

Yes

0x21 SASL_AUTH Starts SASL authentication. Yes

0x22 SASL_STEP Further authentication steps are
required.

Yes

1.5.6 Command Restrictions for Cluster Instances
Some Redis commands are supported by cluster DCS instances for multi-key
operations in the same slot. For details, see Table 1-33.

Table 1-33 Redis commands restricted in cluster DCS instances.

Category Description

Set

SINTER Returns the members of the set resulting from the
intersection of all the given sets.

SINTERSTORE Equal to SINTER, but instead of returning the result set,
it is stored in destination.

SUNION Returns the members of the set resulting from the union
of all the given sets.

SUNIONSTORE Equal to SUNION, but instead of returning the result set,
it is stored in destination.

SDIFF Returns the members of the set resulting from the
difference between the first set and all the successive
sets.

SDIFFSTORE Equal to SDIFF, but instead of returning the result set, it
is stored in destination.

SMOVE Moves member from the set at source to the set at
destination.

Sorted Set

ZUNIONSTORE Computes the union of numkeys sorted sets given by the
specified keys.

ZINTERSTORE Computes the intersection of numkeys sorted sets given
by the specified keys.

HyperLogLog

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 48

Category Description

PFCOUNT Returns the approximated cardinality computed by the
HyperLogLog data structure stored at the specified
variable.

PFMERGE Merges multiple HyperLogLog values into a unique
value.

Keys

RENAME Renames key to newkey.

RENAMENX Renames key to newkey if newkey does not yet exist.

BITOP Performs a bitwise operation between multiple keys
(containing string values) and stores the result in the
destination key.

RPOPLPUSH Returns and removes the last element (tail) of the list
stored at source, and pushes the element at the first
element (head) of the list stored at destination.

String

MSETNX Merges multiple HyperLogLog values into a unique
value.

NO TE

While running commands that take a long time to run, such as FLUSHALL, DCS instances
may not respond to other commands and may change to the faulty state. After the
command finishes executing, the instance will return to normal.

1.5.7 Other Command Usage Restrictions
This section describes restrictions on some Redis commands.

KEYS Command

In case of a large amount of cached data, running the KEYS command may block
the execution of other commands for a long time or occupy exceptionally large
memory. Therefore, when running the KEYS command, describe the exact pattern
and do not use fuzzy keys *. Do not use the KEYS command in the production
environment. Otherwise, the service running will be affected.

Commands in the Server Group
● While running commands that take a long time to run, such as FLUSHALL,

DCS instances may not respond to other commands and may change to the
faulty state. After the command finishes executing, the instance will return to
normal.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 49

● When the FLUSHDB or FLUSHALL command is run, execution of other service
commands may be blocked for a long time in case of a large amount of
cached data.

EVAL and EVALSHA Commands
● When the EVAL or EVALSHA command is run, at least one key must be

contained in the command parameter. Otherwise, the error message "ERR
eval/evalsha numkeys must be bigger than zero in redis cluster mode" is
displayed.

● When the EVAL or EVALSHA command is run, a cluster DCS Redis instance
uses the first key to compute slots. Ensure that the keys to be operated in
your code are in the same slot. For details, visit https://redis.io/commands.

● For the EVAL command:
– You are advised to learn the Lua script features of Redis before running

the EVAL command. For details, see https://redis.io/commands/eval.
– The execution timeout time of a Lua script is 5 seconds. Time-consuming

statements such as long-time sleep and large loop statements should be
avoided.

– When calling a Lua script, do not use random functions to specify keys.
Otherwise, the execution results are inconsistent on the master and
standby nodes.

Other Restrictions
● The time limit for executing a Redis command is 15 seconds. To prevent other

services from failing, a master/replica switchover will be triggered after the
command execution times out.

1.6 HA and DR Policies
Whether you use DCS as the frontend cache or backend data store, DCS is always
ready to ensure data reliability and service availability. The following figure shows
the evolution of DCS DR architectures.

Figure 1-8 DCS DR architecture evolution

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 50

https://redis.io/commands
https://redis.io/commands/eval

To meet the reliability requirements of your data and services, you can choose to
deploy your DCS instance within a single AZ or across AZs.

Single-AZ HA

Single-AZ deployment means deploying an instance within a physical equipment
room. DCS provides process/service HA, data persistence, and hot standby DR
policies for different types of DCS instances.

Single-node DCS instance: When DCS detects a process fault, a new process is
started to ensure service HA.

Figure 1-9 HA for a single-node DCS instance deployed within an AZ

Master/Standby DCS instance: Data is persisted to disk in the master node and
incrementally synchronized and persisted to the standby node, achieving hot
standby and data persistence.

Figure 1-10 HA for a master/standby DCS instance deployed within an AZ

Cluster DCS instance: Similar to a master/standby instance, data in each shard
(instance process) of a cluster instance is synchronized between master and
standby nodes and persisted on both nodes.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 51

Figure 1-11 HA for a cluster DCS instance deployed within an AZ

Cross-AZ DR
The master and standby nodes of a master/standby or cluster DCS instance can be
deployed across AZs (in different equipment rooms). Power supplies and networks
of different AZs are physically isolated. When a fault occurs in the AZ where the
master node is deployed, the standby node connects to the client and takes over
data read and write operations.

Figure 1-12 Cross-AZ deployment of a master/standby DCS instance

NO TE

This mechanism applies in a similar way to a cluster DCS instance. Each shard (process) is
deployed across AZs.

When creating a master/standby or cluster DCS instance, select a standby AZ that
is different from the primary AZ.

Backup, configuration modification, and password change functions cannot be
used during the fault.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 52

1.7 Comparing Redis Versions
When creating a DCS Redis instance, you can select the cache engine version and
the instance type.

● Version
DCS supports Redis 3.0, 4.0, and 5.0. The following table describes the
differences between these versions.

Table 1-34 Differences between Redis versions

Feature Redis 3.0 Redis 4.0 and Redis 5.0

Instance
deployme
nt mode

Based on VMs Containerized based on
physical servers

Time
required
for
creating
an
instance

3–15 minutes, or 10–30
minutes for cluster instances.

8 seconds

QPS 100,000 QPS per node 100,000 QPS per node

Instance
type

Single-node, master/standby,
and Proxy Cluster

Single-node, master/standby
and Redis Cluster

Instance
total
memory

Ranges from 2 GB, 4 GB, 8 GB,
to 1024 GB.

Regular specifications range
from 2 GB, 4 GB, 8 GB, to
1024 GB. Small specifications,
such as 128 MB, 256 MB, 512
MB, and 1 GB, are also
available for single-node and
master/standby instances.

Scale-up
or scale-
down

Online scale-up and scale-
down

Online scale-up and scale-
down

Backup
and
restoratio
n

Supported for master/standby
and cluster instances

Supported for master/standby
and cluster instances

NO TE

The underlying architectures vary by Redis version. Once a Redis version is chosen, it
cannot be changed. For example, you cannot upgrade a DCS Redis 3.0 instance to
Redis 4.0 or 5.0. If you require a higher Redis version, create a new instance that meets
your requirements and then migrate data from the old instance to the new one.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 53

● Instance type
Select from single-node, master/standby, and cluster types. For details about
their architectures and application scenarios, see DCS Instance Types.

1.8 Comparing Redis and Memcached
Redis and Memcached are both popular open-source in-memory databases which
are easy to use and provide higher performance than relational databases.

How can I select between the two key-value databases?

Memcached is suitable for storing simple data structures, whereas Redis is suitable
for storing more complex, larger data that requires persistency.

For details, see the following table.

Table 1-35 Differences between Redis and Memcached

Item Redis Memcached

Latency In-memory database with sub-
millisecond latency

In-memory database with sub
millisecond latency

Ease of use Simple syntax and easy to use Simple syntax and easy to use

Distributed
storage

Horizontal expansion in cluster
mode

Supported

Multi-
language
client

Supports client connections in
more than 30 languages
including Java, C, and Python.

Supports client connections in
more than 10 languages
including Java, C, and Python.

Thread/
Process

Single-core and single-thread
Single-thread communication,
avoiding unnecessary context
switching and contention
Non-blocking I/O (I/O
multiplexing) is used to reduce
resource consumption when
multiple clients are connected.

Multi-thread and scalable
The Memcached performance
can be improved by increasing
the number of CPUs.
There is an obvious performance
advantage in the scenario where
the value of key is great.

Persistent
storage

Supported
Each write operation (adding,
deleting, or modifying data)
can be recorded on disk (AOF
file).

Supported
NOTE

Persistence is not supported by
open-source Memcached, but is
supported by DCS for Memcached.

Data
structure

Supports complex data
structures such as hash, list,
set, and sorted set, catering to
various scenarios.

Supports simple strings.

Lua script
support

Supported Not supported

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 54

Item Redis Memcached

Snapshot
backup

Supported
Snapshots are generated
periodically. Therefore, there is
no guarantee that data will not
be lost.
Redis forks a subprocess to
generate snapshots. When
there is a large amount of
data, the Redis service may be
interrupted for a short time.

Not supported

Key value
restriction

The value of a key can be up to
1 GB.

1 MB

Multiple
databases

Supports up to 256 Redis
databases.

Not supported

Based on the preceding comparison, both the Redis and Memcached are easy to
use and have high performance. However, Redis and Memcached are different in
data structure storage, persistence, backup, migration, and script support. You are
advised to select the most appropriate cache engine based on actual application
scenarios.

NO TE

Memcached is suitable for caching scenarios of small amount of static data, where data is
only read without further computing and processing, for example, HTML code snippets.
Redis has richer data structures and wider application scenarios.

1.9 Comparing DCS and Open-Source Cache Services
DCS supports single-node, master/standby, and cluster instances, ensuring high
read/write performance and fast data access. It also supports various instance
management operations to facilitate your O&M. With DCS, you only need to focus
on the service logic, without concerning about the deployment, monitoring,
scaling, security, and fault recovery issues.

DCS is compatible with open-source Redis and Memcached, and can be
customized based on your requirements. This renders DCS unique features in
addition to the advantages of open-source cache databases.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 55

DCS for Redis vs. Open-Source Redis

Table 1-36 Differences between DCS for Redis and open-source Redis

Feature Open-Source
Redis

DCS for Redis

Service
deployme
nt

Requires 0.5 to 2
days to prepare
servers.

● Creates a Redis 3.0 instance in 5 to 15
minutes.

● Creates a containerized Redis 4.0 or 5.0
instance within 8 seconds.

Version - Deeply engaged in the open-source community
and supports the latest Redis version. Currently,
Redis 3.0, 4.0, and 5.0 are supported.

Security Network and
server safety is
the user's
responsibility.

● Network security is ensured using VPCs and
security groups.

● Data reliability is ensured by data
replication and scheduled backup.

Performa
nce

- 100,000 QPS per node

Monitorin
g

Provides only
basic statistics.

Provides more than 30 monitoring metrics and
customizable alarm threshold and policies.
● Various metrics

– External metrics include the number of
commands, concurrent operations,
connections, clients, and denied
connections.

– Resource usage metrics include CPU
usage, physical memory usage, network
input throughput, and network output
throughput.

– Internal metrics include instance capacity
usage, as well as the number of keys,
expired keys, PubSub channels, PubSub
patterns, keyspace hits, and keyspace
misses.

● Custom alarm thresholds and policies for
different metrics to help identify service
faults.

Backup
and
restoratio
n

Supported ● Supports scheduled and manual backup.
Backup files can be downloaded.

● Backup data can be restored on the console.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 56

Feature Open-Source
Redis

DCS for Redis

Paramete
r
managem
ent

No visualized
parameter
management

● Visualized parameter management is
supported on the console.

● Configuration parameters can be modified
online.

● Data can be accessed and modified on the
console.

Scale-up Interrupts services
and involves a
complex
procedure from
modifying the
server RAM to
modifying Redis
memory and
restarting the OS
and services.

● Supports online scale-up and scale-down
without interrupting services.

● Specifications can be scaled up or down
within the available range based on service
requirements.

DCS for Memcached vs. Open-Source Memcached

Table 1-37 Differences between DCS for Memcached and open-source
Memcached

Feature Open-Source
Memcached

DCS for Memcached

Service
deployme
nt

Requires 0.5 to 2
days to prepare
servers.

Creates an instance in 5 to 15 minutes.

Security Network and
server safety is the
user's
responsibility.

● Network security is ensured using VPCs and
security groups.

● Data reliability is ensured by data
replication and scheduled backup.

Performa
nce

- 100,000 QPS per node

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 57

Feature Open-Source
Memcached

DCS for Memcached

Monitorin
g

Provides only basic
statistics.

Provides more than 30 monitoring metrics and
customizable alarm threshold and policies.
● Various metrics

– External metrics include the number of
commands, concurrent operations,
connections, clients, and denied
connections.

– Resource usage metrics include CPU
usage, physical memory usage, network
input throughput, and network output
throughput.

– Internal metrics include instance
capacity usage, as well as the number of
keys, expired keys, PubSub channels,
PubSub patterns, keyspace hits, and
keyspace misses.

● Custom alarm thresholds and policies for
different metrics to help identify service
faults.

Backup
and
restoratio
n

Not supported ● Supports scheduled and manual backup.
● Backup data can be restored on the

console.

Visualized
maintena
nce

No visualized
parameter
management

● Visualized parameter management is
supported on the console.

● Configuration parameters can be modified
online.

Scale-up Interrupts services
and involves a
complex procedure
from modifying
the server RAM to
modifying Redis
memory and
restarting the OS
and services.

● Supports online scale-up without
interrupting services.

● Specifications can be scaled up or down
within the available range based on service
requirements.

Data
persistenc
e

Not supported Supported for master/standby instances

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 58

1.10 Basic Concepts

DCS Instance
An instance is the minimum resource unit provided by DCS.

You can select the Redis or Memcached cache engine. Instance types can be
single-node, master/standby, or cluster. For each instance type, multiple
specifications are available.

For details, see DCS Instance Specifications and DCS Instance Types.

Project
Projects are used to group and isolate OpenStack resources (computing resources,
storage resources, and network resources). A project can be a department or a
project team. Multiple projects can be created for one account.

Replica
A replica is a node of a DCS instance. No replication indicates that the instance
does not have a standby node. Master/Standby replication indicates that the
instance has a standby node. For example, a master/standby DCS instance has a
master/standby replication. Each node of a cluster DCS Redis instance has a
master/standby replication.

Maintenance Time Window
The maintenance time window is the period when the DCS service team upgrade
and maintain the instance.

DCS instance maintenance takes place only once a quarter and does not interrupt
services. Even so, you are advised to select a time period when the service demand
is low.

When creating an instance, you must specify a maintenance time window, which
can be modified after the instance is created.

For details, see: Modifying Maintenance Time Window.

Cross-AZ Deployment
Master/Standby instances are deployed across different AZs with physically
isolated power supplies and networks. Applications can also be deployed across
AZs to achieve HA for both data and applications.

When creating a master/standby or cluster DCS Redis or Memcached instance, you
can select a standby AZ for the standby node.

Shard
A shard is a management unit of a cluster DCS Redis instance. Each shard
corresponds to a redis-server process. A cluster consists of multiple shards. Each

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 59

shard has multiple slots. Data is distributedly stored in the slots. The use of shards
increases cache capacity and concurrent connections.

1.11 Permissions Management
If you need to assign different permissions to employees in your enterprise to
access your DCS resources, Identity and Access Management (IAM) is a good
choice for fine-grained permissions management. IAM provides identity
authentication, permissions management, and access control, helping you secure
access to your resources.

With IAM, you can use your account to create IAM users, and assign permissions
to the users to control their access to specific resources. For example, some
software developers in your enterprise need to use DCS resources but should not
be allowed to delete DCS instances or perform any other high-risk operations. In
this scenario, you can create IAM users for the software developers and grant
them only the permissions required for using DCS resources.

If your account does not require individual IAM users for permissions
management, skip this section.

DCS Permissions

By default, new IAM users do not have permissions assigned. You need to add a
user to one or more groups, and attach permissions policies or roles to these
groups. Users inherit permissions from the groups to which they are added and
can perform specified operations on cloud services based on the permissions.

DCS is a project-level service deployed and accessed in specific physical regions. To
assign DCS permissions to a user group, specify the scope as region-specific
projects and select regions for the permissions to take effect. If All projects is
selected, the permissions will take effect for the user group in all region-specific
projects. When accessing DCS, the users need to switch to a region where they
have been authorized to use this service.

You can grant users permissions by using roles and policies.

● Roles: A type of coarse-grained authorization mechanism that defines
permissions related to user responsibilities. This mechanism provides only a
limited number of service-level roles for authorization. When using roles to
grant permissions, you must also assign other roles on which the permissions
depend to take effect. However, roles are not an ideal choice for fine-grained
authorization and secure access control.

● Policies: A type of fine-grained authorization mechanism that defines
permissions required to perform operations on specific cloud resources under
certain conditions. This mechanism allows for more flexible policy-based
authorization, meeting requirements for secure access control. For example,
you can grant DCS users only the permissions for operating DCS instances.
Fine-grained policies are based on APIs. The minimum granularity of a policy
is API actions. For the API actions supported by DCS, see "Permissions Policies
and Supported Actions".

Table 1 lists all the system-defined roles and policies supported by DCS.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 60

Table 1-38 System-defined roles and policies supported by DCS

Role/Policy
Name

Description Type Dependency

DCS FullAccess All permissions for DCS.
Users granted these
permissions can operate and
use all DCS instances.

System-
defined
policy

None

DCS
UserAccess

Common user permissions
for DCS, excluding
permissions for creating,
modifying, deleting DCS
instances and modifying
instance specifications.

System-
defined
policy

None

DCS
ReadOnlyAcces
s

Read-only permissions for
DCS. Users granted these
permissions can only view
DCS instance data.

System-
defined
policy

None

NO TE

The DCS UserAccess policy is different from the DCS FullAccess policy. If you configure
both of them, you cannot create, modify, delete, or scale DCS instances because deny
statements will take precedence over allowed statements.

Table 2 lists the common operations supported by each system policy of DCS.
Please choose proper system policies according to this table.

Table 1-39 Common operations supported by each system policy

Operation DCS FullAccess DCS UserAccess DCS
ReadOnlyAccess

Modifying
instance
configuration
parameters

√ √ ×

Deleting
background
tasks

√ √ ×

Accessing
instances
using Web CLI

√ √ ×

Modifying
instance
running status

√ √ ×

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 61

Operation DCS FullAccess DCS UserAccess DCS
ReadOnlyAccess

Expanding
instance
capacity

√ × ×

Changing
instance
passwords

√ √ ×

Modifying
DCS instances

√ × ×

Performing a
master/
standby
switchover

√ √ ×

Backing up
instance data

√ √ ×

Analyzing big
keys or hot
keys

√ √ ×

Creating DCS
instances

√ × ×

Deleting
instance
backup files

√ √ ×

Upgrading
instance
version

√ √ ×

Restoring
instance data

√ √ ×

Resetting
instance
passwords

√ √ ×

Migrating
instance data

√ √ ×

Downloading
instance
backup data

√ √ ×

Deleting DCS
instances

√ × ×

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 62

Operation DCS FullAccess DCS UserAccess DCS
ReadOnlyAccess

Querying
instance
configuration
parameters

√ √ √

Querying
instance
restoration
logs

√ √ √

Querying
instance
backup logs

√ √ √

Querying DCS
instances

√ √ √

Querying
instance
background
tasks

√ √ √

Querying
instance
upgrade
information

√ √ √

Querying all
instances

√ √ √

Viewing
instance
performance
metrics

√ √ √

1.12 Related Services
DCS is used together with other services, including VPC, ECS, IAM, Cloud Eye, CTS,
and Object Storage Service (OBS).

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 63

Figure 1-13 Relationships between DCS and other services

VPC
A VPC is an isolated virtual network environment on the cloud. You can configure
IP address ranges, subnets, and security groups in a VPC.

DCS runs in VPCs. The VPC service manages EIPs and bandwidth, and provides
security groups. You can configure access rules for security groups to secure the
access to DCS.

ECS
An ECS is a cloud server that provides scalable, on-demand computing resources
for secure, flexible, and efficient applications.

You can access and manage your DCS instances using an ECS.

IAM
IAM provides identity authentication, permissions management, and access
control.

With IAM, you can control access to DCS.

Cloud Eye
Cloud Eye is a secure, scalable, and integrated monitoring service. With Cloud Eye,
you can monitor your DCS service and configure alarm rules and notifications.

Cloud Trace Service (CTS)
CTS provides you with a history of operations performed on cloud service
resources. With CTS, you can query, audit, and backtrack operations. The traces
include the operation requests sent using the management console or open APIs
and the results of these requests.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 64

OBS
OBS provides secure, cost-effective storage service using objects as storage units.
With OBS, you can store and manage the lifecycle of massive amounts of data.

You can store DCS instance backup files in OBS.

Distributed Cache Service
User Guide 1 Service Overview

2022-04-12 65

2 Permissions Management

2.1 Creating a User and Granting DCS Permissions
This chapter describes how to use IAM to implement fine-grained permissions
control for your DCS resources. With IAM, you can:

● Create IAM users for employees based on your enterprise's organizational
structure. Each IAM user will have their own security credentials for accessing
DCS resources.

● Grant only the permissions required for users to perform a specific task.
● Entrust an account or cloud service to perform efficient O&M on your DCS

resources.

If your account does not need individual IAM users, you may skip over this
chapter.

This section describes the procedure for granting the DCS ReadOnlyAccess
permission (see Figure 2-1) as an example.

Prerequisites
You are familiar with the permissions (see Permissions Management) supported
by DCS and choose policies or roles according to your requirements. For the
permissions of other services, see Permissions Policies.

Distributed Cache Service
User Guide 2 Permissions Management

2022-04-12 66

Process Flow

Figure 2-1 Process of granting DCS permissions

1. Create a user group and grant permissions.

Create a user group on the IAM console, and attach the DCS ReadOnlyAccess
policy to the group.

2. Create an IAM user.

Create a user on the IAM console and add the user to the group created in 1.

3. Log in and verify permissions.

Log in to the DCS console by using the newly created user, and verify that the
user only has read permissions for DCS.

2.2 DCS Custom Policies
Custom policies can be created to supplement the system-defined policies of DCS.
For the actions that can be added for custom policies, see Permissions Policies and
Supported Actions.

You can create custom policies in either of the following ways:

● Visual editor: Select cloud services, actions, resources, and request conditions.
This does not require knowledge of policy syntax.

● JSON: Edit JSON policies from scratch or based on an existing policy.

For details, see "Creating a Custom Policy". The following section contains
examples of common DCS custom policies.

Distributed Cache Service
User Guide 2 Permissions Management

2022-04-12 67

NO TE

Due to data caching, a policy involving OBS actions will take effect five minutes after it is
attached to a user, user group, or project.

Example Custom Policies
● Example 1: Allowing users to delete and restart DCS instances and clear data

of an instance
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "
 dcs:instance:delete
 dcs:instance:modifyStatus
 "
]
 }
]
}

● Example 2: Denying DCS instance deletion
A policy with only "Deny" permissions must be used in conjunction with other
policies to take effect. If the permissions assigned to a user contain both
"Allow" and "Deny", the "Deny" permissions take precedence over the "Allow"
permissions.
The following method can be used if you need to assign permissions of the
DCS FullAccess policy to a user but you want to prevent the user from
deleting DCS instances. Create a custom policy for denying DCS instance
deletion, and attach both policies to the group to which the user belongs.
Then, the user can perform all operations on DCS instances except deleting
DCS instances. The following is an example of a deny policy:
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "dcs:instance:delete"
]
 }
]
}

Distributed Cache Service
User Guide 2 Permissions Management

2022-04-12 68

3 Getting Started

3.1 Creating an Instance

3.1.1 Identifying Requirements
Before creating a DCS instance, identify your requirements and complete the
following preparations:

1. Decide on the required cache engine.

Choose a cache engine based on service requirements. The cache engine
cannot be changed once the instance is created.

– For more information about Redis and Memcached cache engines, see
What Is DCS?

– For more information about the differences between Redis and
Memcached, see Comparing Redis and Memcached.

2. Decide on the required cache engine version.

Different Redis versions have different features. For details, see Comparing
Redis Versions.

3. Decide on the required instance type.

DCS provides single-node, master/standby, Proxy Cluster, and Redis Cluster
types of instances. Each type has its own architecture. For details about the
instance architectures, see DCS Instance Types.

4. Decide on the required instance specification.

Each specification specifies the maximum available memory, number of
connections, and bandwidth. For details, see DCS Instance Specifications.

5. Decide on the region and whether cross-AZ deployment is required.

Choose a region closest to your application to reduce latency.

A region consists of multiple availability zones (AZs) with physically isolated
power supplies and networks. Master/standby and cluster DCS instances can
be deployed across AZs.

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 69

NO TE

● If a master/standby or cluster DCS instance is deployed across AZs, faults in an AZ
do not affect cache nodes in other AZs. This is because when the master node is
faulty, the standby cache node will automatically become the master node to
provide services. Such deployment achieves better disaster recovery.

● Deploying a DCS instance across AZs slightly reduces network efficiency compared
with deploying an instance within an AZ. Therefore, if a DCS instance is deployed
across AZs, synchronization between master and standby cache nodes is slightly
less efficient.

6. Decide whether backup policies are required.
Currently, backup policies can be configured only for master/standby and
cluster DCS instances. For details about backup and restoration, see
Overview.

3.1.2 Preparing the Environment
To access DCS instances through a Virtual Private Cloud (VPC), create a VPC and
configure security groups and subnets for it before using DCS. A VPC provides an
isolated virtual network environment which you can configure and manage. Using
VPCs enhances cloud resource security and simplifies network deployment.

Once you have created a VPC, you can use it for all DCS instances you
subsequently create.

Creating a VPC

Step 1 Log in to the management console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 Click Service List, and choose Network > Virtual Private Cloud to launch the
VPC console.

Step 4 Click Apply for VPC.

Step 5 Create a VPC as prompted, retaining the default values unless otherwise required.

For details about how to create a VPC, see "VPC and Subnet" > "VPC" > "Creating
a VPC" in Virtual Private Cloud User Guide.

After a VPC is created, a subnet is also created in the subnet. If the VPC needs
more subnets, go to Step 7. Otherwise, go to Step 8.

NO TE

● When creating a VPC, CIDR Block indicates the IP address range of the VPC. If this
parameter is set, the IP addresses of subnets in the VPC must be within the IP address
range of the VPC.

● If you create a VPC to provision DCS instances, you do not need to configure the CIDR
block for the VPC.

Step 6 In the navigation pane on the left, choose Virtual Private Cloud > My VPCs.

Step 7 Click Create Subnet. Create a subnet as prompted, retaining the default values
unless otherwise required.

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 70

For details about how to create a subnet, see "VPC and Subnet" > "Subnet" in
Virtual Private Cloud User Guide.

Step 8 In the navigation pane on the left, choose Access Control > Security Groups and
then click Create Security Group in the upper right corner of the displayed page.
Create a security group as prompted, retaining the default values unless otherwise
required.

For details about how to create a security group, see "Security" > "Security Group"
> "Creating a Security Group" in Virtual Private Cloud User Guide.

----End

3.1.3 Creating a DCS Redis Instance
You can create one or more DCS Redis instances with the required computing
capabilities and storage space based on service requirements.

Creating a DCS Redis Instance

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner of the management console and select a region
and a project.

Step 3 Click Create DCS Instance.

Step 4 Select a region closest to your application to reduce latency and accelerate access.

Step 5 Specify the following instance parameters based on the information collected in
Identifying Requirements.

1. Cache Engine:

Select Redis.

2. Version:

Currently, 3.0, 4.0, and 5.0 versions are supported.

NO TE

– When creating a Proxy Cluster instance, you can only select version 3.0.

– When creating a Redis Cluster instance, you can select versions 4.0 or 5.0.

3. Set Instance Type to Single-node, Master/Standby, Proxy Cluster or Redis
Cluster.

4. Set CPU Architecture to x86.

5. Set Replicas. The default value is 2 (including the master).

This parameter is displayed only when you select Redis 4.0 or Redis 5.0 and
the instance type is master/standby or Redis Cluster.

6. Select an AZ.

If the instance type is master/standby, Proxy Cluster, or Redis Cluster, Standby
AZ is displayed. Select a standby AZ for the standby node of the instance.

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 71

NO TE

– To accelerate access, deploy your instance and your application in the same AZ.

– There are multiple AZs in each region. If resources are insufficient in an AZ, the AZ
will be unavailable. In this case, select another AZ.

7. Instance Specification:
The remaining quota is displayed on the console.
To apply to increase quota, click Increase quota below the specifications.

Step 6 Configure the instance network parameters.

1. For VPC, select a created VPC, subnet, and specify the IP address.
You can choose to obtain an automatically assigned IP address or manually
specify an IP address that is available in the selected subnet.
For a DCS Redis 4.0 or 5.0 instance, you can specify a port numbering in the
range from 1 to 65535. If no port is specified, the default port 6379 will be
used. For a DCS Redis 3.0 instance, the port cannot be customized. Port 6379
will be used.

2. Select a security group.
A security group is a set of rules that control access to ECSs. It provides access
policies for mutually trusted ECSs with the same security protection
requirements in the same VPC.
This parameter can be configured only for instances that use Redis 3.0. DCS
for Redis 4.0 and 5.0 are based on VPC endpoints and do not support security
groups.

Step 7 Set the instance password.

This password is used for accessing the DCS Redis instance.

NO TE

For security purposes, you must enter an instance-specific password when you are accessing
the DCS Redis instance. Keep your instance password secure and change it periodically.

The password must meet the following requirements:

● Cannot be left blank.

● Can contain 8 to 32 characters.

● Must contain at least three of the following character types:

– Lowercase letters

– Uppercase letters

– Digits

– special characters (`~!@#$^&*()-_=+\|{}:,<.>/?)

Step 8 Click More Settings to display more configurations, including auto backup.

1. Specify Name and Description.
The value of Name can contain 4 to 64 characters.

2. Choose whether to enable Auto Backup.
This parameter is displayed only when the instance type is master/standby or
cluster. For more information on how to configure a backup policy, see
Overview.

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 72

3. Rename critical commands.
Command Renaming is displayed for Redis 4.0 and 5.0. Currently, you can
only rename the COMMAND, KEYS, FLUSHDB, FLUSHALL, and HGETALL
commands.

4. Specify the maintenance window.
Choose a window for DCS O&M personnel to perform maintenance on your
instance. You will be contacted before any maintenance activities are
performed.

Step 9 Click Create Now.

The displayed page shows the instance information you have specified.

Step 10 Confirm the instance information and click Submit.

Step 11 Return to the Cache Manager page to view and manage your DCS instances.

1. Creating a single-node or master/standby DCS Redis 3.0 instance takes 5 to
15 minutes. Creating a cluster DCS Redis 3.0 instance takes 30 minutes.

NO TE

DCS Redis 4.0 and 5.0 instances are containerized and can be created within seconds.

2. After a DCS instance has been successfully created, it enters the Running
state by default.

----End

3.1.4 Creating a DCS Memcached Instance
You can create one or more DCS Memcached instances with the required
computing capabilities and storage space based on service requirements.

Creating a DCS Memcached Instance

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click Create DCS Instance.

Step 5 Select a region closest to your application to reduce latency and accelerate access.

Step 6 Specify the following instance parameters based on the information collected in
Identifying Requirements.

1. Cache Engine:
Select Memcached.

2. Instance Type:
Select Single-node or Master/Standby.

3. Select an AZ.

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 73

NO TE

To accelerate access, deploy your instance and your application in the same AZ. To
ensure data reliability, deploy them in different AZs.

If the instance type is master/standby, Standby AZ is displayed. Select a
standby AZ for the standby node of the instance.

4. Specify Instance Specification.
The remaining quota is displayed on the console.
To apply to increase quota, click Increase quota below the specifications.

Step 7 Configure the instance network parameters.

1. For VPC, select a created VPC, subnet, and specify the IP address.
You can choose to obtain an automatically assigned IP address or manually
specify an IP address that is available in the selected subnet.

2. Select a security group.
A security group is a set of rules that control access to ECSs. It provides access
policies for mutually trusted ECSs with the same security protection
requirements in the same VPC.

Step 8 Set the instance password.
● Select Yes or No for Password Protected.

NO TE

– Password-free access carries security risks. Exercise caution when selecting this
mode.

– After the instance is created, you can click reset its password.

– If password-free access is disabled, DCS Memcached instances must be accessed
using the Memcached binary protocol and through SASL authentication.

● Username required for accessing the new DCS instance. The username must
meet the following requirements.

NO TE

This parameter is displayed only if password-protected access is enabled.

– Cannot be left blank.
– Must start with a letter.
– Can contain 1 to 64 characters.
– Must contain only letters, digits, hyphens (-), and underscores (_).

● Password and Confirm Password: These parameters indicate the password of
accessing the DCS Memcached instance, and are displayed only when
Password Protected is set to Yes.

NO TE

For security purposes, if password-free access is disabled, the system prompts you to
enter an instance-specific password when you are accessing the DCS Memcached
instance. Keep your instance password secure and change it periodically.

Step 9 Click More Settings to display more configurations, including backup policy and
maintenance window.

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 74

1. Specify Name and Description.
The instance name can contain 4 to 64 characters.

2. Specify backup and restoration policies.
This parameter is displayed only when the instance type is master/standby.
For more information on how to configure a backup policy, see Backing Up
and Restoring DCS Instances.

3. Specify the maintenance window.
Choose a window for DCS O&M personnel to perform maintenance on your
instance. Time windows 22:00–02:00, 02:00–06:00, 06:00–10:00, 10:00–14:00,
14:00–18:00, and 18:00–22:00 are available for selection.

Step 10 Click Next.

The displayed page shows the instance information you have specified.

Step 11 Confirm the instance information.

Step 12 After the new DCS instance has been created, return to the Cache Manager page
to view and manage your DCS instances.

1. It takes 5 to 15 minutes to create a DCS instance.
2. After a DCS instance has been successfully created, it enters the Running

state by default.

----End

3.2 Accessing an Instance

3.2.1 Accessing a DCS Redis Instance Through redis-cli
Access a DCS Redis instance through redis-cli on an ECS in the same VPC. For
more information on how to use other Redis clients, visit https://redis.io/clients.

NO TE

● Redis 3.0 does not support port customization and allows only port 6379. For Redis 4.0
and 5.0, you can specify a port or use the default port 6379. The following uses the
default port 6379. If you have specified a port, replace 6379 with the actual port.

● When connecting to a Redis Cluster instance, ensure that -c is added to the
command. Otherwise, the connection will fail.
● Run the following command to connect to a Redis Cluster instance:

./redis-cli -h {dcs_instance_address} -p 6379 -a {password} -c
● Run the following command to connect to a single-node, master/standby, or Proxy

Cluster instance:
./redis-cli -h {dcs_instance_address} -p 6379 -a {password}

For details, see Step 3 and Step 4.

Prerequisites
● The DCS Redis instance you want to access is in the Running state.
● An ECS has been created. For more information on how to create ECSs, see

the Elastic Cloud Server User Guide.

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 75

https://redis.io/clients

● If the ECS runs the Linux OS, ensure that the GCC compilation environment
has been installed on the ECS.

Procedure (Linux)

Step 1 Obtain the IP address and port number of the DCS Redis instance to be accessed.

For details, see Viewing Details of a DCS Instance.

Step 2 Install redis-cli.

The following steps assume that your client is installed on the Linux OS.

1. Log in to the ECS.
2. Run the following command to download the source code package of your

Redis client from http://download.redis.io/releases/redis-5.0.8.tar.gz:
wget http://download.redis.io/releases/redis-5.0.8.tar.gz

3. Run the following command to decompress the source code package of your
Redis client:
tar -xzf redis-5.0.8.tar.gz

4. Run the following commands to go to the Redis directory and compile the
source code of your Redis client:
cd redis-5.0.8
make
cd src

Step 3 Access a DCS instance of a type other than Redis Cluster.

Perform the following procedure to access a DCS Redis 3.0 instance, or a single-
node or master/standby DCS Redis 4.0 or 5.0 instance.

./redis-cli -h ${instance IP} -p 6379 –a ${password}

NO TE

1. If the instance is password-free, connect it by running the ./redis-cli -h ${instance IP} -p
6379 command.

2. If the instance is password-protected, connect it by running the ./redis-cli -h ${instance
IP} -p 6379 -a ${password} command.

Step 4 Access a DCS instance of the Redis Cluster type.

Perform the following procedure to access a DCS Redis 4.0 or 5.0 instance in Redis
Cluster type.

1. Run the following commands to access the chosen DCS Redis instance:
./redis-cli -h {dcs_instance_address} -p 6379 -a {password} -c
{dcs_instance_address} indicates the IP address of the DCS Redis instance,
6379 is the port used for accessing the instance, {password} is the password
of the instance, and -c is used for accessing Redis Cluster nodes. The IP
address and port number are obtained in Step 1.
Example:
root@ecs-redis:~/redis-5.0.8/src# ./redis-cli -h 192.168.0.85 -p 6379 -a ****** -c
192.168.0.85:6379>

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 76

http://download.redis.io/releases/redis-5.0.8.tar.gz

2. Run the following command to view the Redis Cluster node information:
cluster nodes
Each shard in a Redis Cluster has a master and a replica by default. The
proceeding command provides all the information of cluster nodes.
192.168.0.85:6379> cluster nodes
0988ae8fd3686074c9afdcce73d7878c81a33ddc 192.168.0.231:6379@16379 slave
f0141816260ca5029c56333095f015c7a058f113 0 1568084030
000 3 connected
1a32d809c0b743bd83b5e1c277d5d201d0140b75 192.168.0.85:6379@16379 myself,master - 0
1568084030000 2 connected 5461-10922
c8ad7af9a12cce3c8e416fb67bd6ec9207f0082d 192.168.0.130:6379@16379 slave
1a32d809c0b743bd83b5e1c277d5d201d0140b75 0 1568084031
000 2 connected
7ca218299c254b5da939f8e60a940ac8171adc27 192.168.0.22:6379@16379 master - 0 1568084030000
1 connected 0-5460
f0141816260ca5029c56333095f015c7a058f113 192.168.0.170:6379@16379 master - 0
1568084031992 3 connected 10923-16383
19b1a400815396c6223963b013ec934a657bdc52 192.168.0.161:6379@16379 slave
7ca218299c254b5da939f8e60a940ac8171adc27 0 1568084031
000 1 connected

Write operations can only be performed on master nodes. The CRC16 of the
key modulo 16384 is taken to compute what is the hash slot of a given key.
As shown in the following, the value of CRC16 (KEY) mode 16384
determines the hash slot that a given key is located at and redirects the client
to the node where the hash slot is located at.
192.168.0.170:6379> set hello world
-> Redirected to slot [866] located at 192.168.0.22:6379
OK
192.168.0.22:6379> set happy day
OK
192.168.0.22:6379> set abc 123
-> Redirected to slot [7638] located at 192.168.0.85:6379
OK
192.168.0.85:6379> get hello
-> Redirected to slot [866] located at 192.168.0.22:6379
"world"
192.168.0.22:6379> get abc
-> Redirected to slot [7638] located at 192.168.0.85:6379
"123"
192.168.0.85:6379>

----End

Procedure (Windows)

Download the compilation package of the Redis client for Windows. (This is not
the source code package.) Decompress the package in any directory, open the CLI
tool cmd.exe, and go to the directory. Then, run the following command to access
the DCS Redis instance:

redis-cli.exe -h XXX -p 6379

XXX indicates the IP address of the DCS instance and 6379 is an example port
number used for accessing a DCS instance. For details about how to obtain the IP
address and port number, see Viewing Details of a DCS Instance. Change the IP
address and port as required.

3.2.2 Access in Different Languages

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 77

https://github.com/MicrosoftArchive/redis/tags

3.2.2.1 Java

3.2.2.1.1 Jedis

Access a DCS Redis instance through Jedis on an ECS in the same VPC. For more
information on how to use other Redis clients, visit https://redis.io/clients.

NO TE

● If a password was set during DCS Redis instance creation, configure the password for
connecting to Redis using a Jedis client. Do not hard code the plaintext password.

● When using JedisCluster to connect to a Redis Cluster DCS Redis 4.0 or 5.0 instance, the
cluster topology is automatically refreshed. The client needs to reconnect to Redis by
itself.

Prerequisites
● The DCS Redis instance you want to access is in the Running state.
● An ECS has been created. For more information on how to create ECSs, see

the Elastic Cloud Server User Guide.
● If the ECS runs the Linux OS, ensure that the Java compilation environment

has been installed on the ECS.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to
be accessed.

For details, see Viewing Details of a DCS Instance.

Step 2 Log in to the ECS where you want to install Docker.

Step 3 Use Maven to add the following dependency to the pom.xml file:
<dependency>
 <groupId>redis.clients</groupId>
 <artifactId>jedis</artifactId>
 <version>4.1.1</version>
</dependency>

Step 4 Access the DCS instance by using Jedis.

Obtain the source code of the Jedis client. Use either of the following two
methods to access a DCS Redis instance through Jedis:
● Single Jedis connection
● Jedis pool

Example code:

1. Example of using Jedis to connect to a single-node, master/standby, or Proxy
Cluster DCS Redis instance with a single connection
// Creating a connection in password mode
 String host = "192.168.0.150";
 int port = 6379;
 String pwd = "passwd";

 Jedis client = new Jedis(host, port);
 client.auth(pwd);
 client.connect();

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 78

https://redis.io/clients
https://github.com/xetorthio/jedis

// Run the set command
 String result = client.set("key-string", "Hello, Redis!");
System.out.println(String.format("set instruction execution result:%s", result));
// Run the get command
 String value = client.get("key-string");
 System.out.println(String.format("get command result:%s", value));

// Creating a connection in password-free mode
 String host = "192.168.0.150";
 int port = 6379;

 Jedis client = new Jedis(host, port);
 client.connect();
// Run the set command
 String result = client.set("key-string", "Hello, Redis!");
 System.out.println(String.format("set command result:%s", result));
// Run the get command
 String value = client.get("key-string");
 System.out.println(String.format("get command result:%s", value));

host indicates the example IP address/domain name of DCS instance and port
indicates the port number of DCS instance. For details about how to obtain
the IP address/domain name and port, see Step 1. Change the IP address and
port as required. pwd indicates the password used for logging in to the
chosen DCS Redis instance. This password is defined during DCS Redis
instance creation.

2. Example of using Jedis to connect to a single-node, master/standby, or Proxy
Cluster DCS Redis instance with connection pooling
// Generate configuration information of a Jedis pool
 String ip = "192.168.0.150";
 int port = 6379;
 String pwd = "passwd";
 GenericObjectPoolConfig config = new GenericObjectPoolConfig();
 config.setTestOnBorrow(false);
 config.setTestOnReturn(false);
 config.testWhileIdle(true);
 config.setMaxTotal(100);
 config.setMaxIdle(100);
 config.setMaxWaitMillis(2000);
JedisPool pool = new JedisPool(config, ip, port, 100000, pwd);//Generate a Jedis pool when the
application is being initialized
// Get a Jedis connection from the Jedis pool when a service operation occurs
 Jedis client = pool.getResource();
 try {
 // Run commands
 String result = client.set("key-string", "Hello, Redis!");
 System.out.println(String.format("set command result:%s", result));
 String value = client.get("key-string");
 System.out.println(String.format("get command result:%s", value));
 } catch (Exception e) {
 // TODO: handle exception
 } finally {
 // Return the Jedis connection to the Jedis connection pool after the client's request is processed
 if (null != client) {
 pool.returnResource(client);
 }
 } // end of try block
 // Destroy the Jedis pool when the application is closed
 pool.destroy();

// Configure the connection pool in the password-free mode
 String ip = "192.168.0.150";
 int port = 6379;
 GenericObjectPoolConfig config = new GenericObjectPoolConfig();
 config.setTestOnBorrow(false);
 config.setTestOnReturn(false);
 config.testWhileIdle(true);

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 79

 config.setMaxTotal(100);
 config.setMaxIdle(100);
 config.setMaxWaitMillis(2000);
 JedisPool pool = new JedisPool(config, ip, port, 100000);//Generate a JedisPool when the application
is being initialized
// Get a Jedis connection from the Jedis pool when a service operation occurs
 Jedis client = pool.getResource();
 try {
 // Run commands
 String result = client.set("key-string", "Hello, Redis!");
 System.out.println(String.format("set command result:%s", result));
 String value = client.get("key-string");
 System.out.println(String.format("get command result:%s", value));
 } catch (Exception e) {
 // TODO: handle exception
 } finally {
 // Return the Jedis connection to the Jedis connection pool after the client's request is processed
 if (null != client) {
 pool.returnResource(client);
 }
 } // end of try block
 // Destroy the Jedis pool when the application is closed
 pool.destroy();

ip indicates the IP address/domain name of DCS instance and port indicates
the port number of DCS instance. For details about how to obtain the IP
address/domain name and port, see Step 1. Change the IP address and port
as required. pwd indicates the password used for logging in to the chosen DCS
Redis instance. This password is defined during DCS Redis instance creation.
Automatic reconnection is supported if the testOnBorrow parameter of the
connection pool is enabled. When the service tries to obtain a Redis
connection from the connection pool, the connection pool checks connections.
After detecting a normal connection, the connection pool provides the
connection to the service at the cost of performance. If you require high
performance, do not enable this parameter and configure the upper-layer
application for it to handle exceptions and retries.

3. Example code for connecting to Redis Cluster using a single connection
– With a password

//The following shows password-protected access.
int port = 6379;
String host = "192.168.144.37";
//Create JedisCluster.
Set<HostAndPort> nodes = new HashSet<HostAndPort>();
nodes.add(new HostAndPort(host, port));
JedisCluster cluster = new JedisCluster(nodes, 5000, 3000, 10, "password", new
JedisPoolConfig());
cluster.set("key", "value");
System.out.println("Connected to RedisCluster:" + cluster.get("key"));
cluster.close();

– Without a password
int port = 6379;
String host = "192.168.144.37";
//Create JedisCluster.
Set<HostAndPort> nodes = new HashSet<HostAndPort>();
nodes.add(new HostAndPort(host, port));
JedisCluster cluster = new JedisCluster(nodes);
cluster.set("key", "value");
System.out.println("Connected to RedisCluster:" + cluster.get("key"));
cluster.close();

host indicates the example IP address/domain name of DCS instance and port
indicates the port number of DCS instance. For details about how to obtain
the IP address/domain name and port, see Step 1. Change the IP address and
port as required. {password} indicates the password used to log in to the

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 80

chosen DCS Redis instance. This password is defined during DCS Redis
instance creation.

Step 5 Compile code according to the readme file in the source code of the Jedis client.
Run the Jedis client to access the chosen DCS Redis instance.

----End

3.2.2.1.2 Lettuce

Access a Redis Cluster instance through Lettuce on an ECS in the same VPC. For
more information on how to use other Redis clients, visit https://redis.io/clients.

NO TE

If a password was set during DCS Redis instance creation, configure the password for
connecting to Redis using Lettuce. Do not hard code the plaintext password.

To connect to a single-node, master/standby, or Proxy Cluster instance, use the RedisClient
object of Lettuce. To connect to a Redis Cluster instance, use the RedisClusterClient object.

Prerequisites
● The DCS Redis instance you want to access is in the Running state.
● An ECS has been created. For more information on how to create ECSs, see

the Elastic Cloud Server User Guide.
● If the ECS runs the Linux OS, ensure that the Java compilation environment

has been installed on the ECS.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to
be accessed.

For details, see Viewing Details of a DCS Instance.

Step 2 Log in to the ECS.

Step 3 Use Maven to add the following dependency to the pom.xml file:
<dependency>
 <groupId>io.lettuce</groupId>
 <artifactId>lettuce-core</artifactId>
 <version>6.1.6.RELEASE</version>
</dependency>

Step 4 Use Lettuce (a Java client) to connect to the DCS instance.
● Example of using Lettuce to connect to a single-node, master/standby, or

Proxy Cluster DCS Redis instance with a single connection
// password indicates the connection password. If there is no password, delete "password@". If there
is a password and it contains special characters, conversion is required.
RedisClient redisClient = RedisClient.create("redis://password@host:port");
StatefulRedisConnection<String, String> connection = redisClient.connect();
RedisCommands<String, String> syncCommands = connection.sync();
syncCommands.set("key", "value");
System.out.println("Connected to Redis:" + syncCommands.get("key"));
// Close the connection.
connection.close();
// Close the client.
redisClient.shutdown();

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 81

https://redis.io/clients

● Example of using Lettuce to connect to a single-node, master/standby, or
Proxy Cluster DCS Redis instance with connection pooling
// password indicates the connection password. If there is no password, delete "password@". If there
is a password and it contains special characters, conversion is required.
RedisClient clusterClient = RedisClient.create("redis://password@host:port");
GenericObjectPoolConfig<StatefulRedisConnection<String, String>> genericObjectPoolConfig = new
GenericObjectPoolConfig();
// Connection pool parameters
genericObjectPoolConfig.setMaxIdle(3);
genericObjectPoolConfig.setMinIdle(2);
genericObjectPoolConfig.setMaxTotal(3);
genericObjectPoolConfig.setMaxWaitMillis(-1);
GenericObjectPool<StatefulRedisConnection<String, String>> pool = ConnectionPoolSupport
 .createGenericObjectPool(() -> clusterClient.connect(), genericObjectPoolConfig);
// Obtain a connection to perform operations.
try (StatefulRedisConnection<String, String> con = pool.borrowObject()) {
 RedisCommands<String, String> sync = con.sync();
 sync.set("key", "value");
 System.out.println("Connected by pool:" + sync.get("key"));
} catch (Exception e) {
 e.printStackTrace();
}finally {
 // Close the resources.
 pool.close();
 clusterClient.shutdown();
}

● Example of using Lettuce to connect to a Redis Cluster
// password indicates the connection password. If there is no password, delete "password@". If there
is a password and it contains special characters, conversion is required.
RedisClusterClient redisClient = RedisClusterClient.create("redis://password@host:port");
StatefulRedisClusterConnection<String, String> connection = redisClient.connect();
RedisAdvancedClusterCommands<String, String> syncCommands = connection.sync();
syncCommands.set("key", "value");
System.out.println("Connected to RedisCluster:"+syncCommands.get("key"));
// Close the connection.
connection.close();
// Close the client.
redisClient.shutdown();

----End

3.2.2.1.3 Redisson

Access a DCS Redis instance through Redisson on an ECS in the same VPC. For
more information about how to use other Redis clients, visit the Redis official
website.

NO TE

● If a password was set during DCS Redis instance creation, configure the password for
connecting to Redis using Redisson. Do not hard code the plaintext password.

● To connect to a single-node, master/standby, or Proxy Cluster instance, use the
useSingleServer method of the SingleServerConfig object of Redisson. To connect to a
Redis Cluster instance, use the useClusterServers method of the ClusterServersConfig
object.

Prerequisites
● A DCS Redis instance has been created and is in the Running state.
● An ECS has been created. For details about how to create an ECS, see Elastic

Cloud Server User Guide.
● If the ECS runs the Linux OS, ensure that the Java compilation environment

has been installed on the ECS.

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 82

https://redis.io/clients
https://redis.io/clients

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to
be accessed.

For details, see Viewing Details of a DCS Instance.

Step 2 Log in to the ECS.

Step 3 Use Maven to add the following dependency to the pom.xml file:
<dependency>
 <groupId>org.redisson</groupId>
 <artifactId>redisson</artifactId>
 <version>3.16.8</version>
</dependency>

Step 4 Configure the connection pool.

Recommended keepalive configurations:

ping connection interval. Configuring this parameter will increase Redis load. Set a value based on the
number of connections. The more the connections, the larger the value. Minimum value: 1000. If the
number of active Redis connections exceeds 5000, do not set this parameter.
pingConnectionInterval: 3000

The following is a configuration example for a single-node instance. (Set the
timeout interval and connection pool size based on the site requirements. The
following settings are examples only.)

 redisson:
 config:
 singleServerConfig:
 # Connection timeout, in milliseconds.
 connectTimeout: 10000
 # Command waiting timeout, in milliseconds.
 timeout: 3000
 # Number of retry times upon a command failure.
 retryAttempts: 3
 # Interval for retrying sending commands, in milliseconds.
 retryInterval: 1500
 # Minimum number of idle connections.
 connectionMinimumIdleSize: 30
 # Connection pool size.
 connectionPoolSize: 50
 # Redis database ID.
 database: 0
 # DNS monitoring interval, in milliseconds.
 dnsMonitoringInterval: 5000
 # ping connection interval.
 pingConnectionInterval: 3000

The following is a configuration example for a cluster instance. (Set the timeout
interval and connection pool size based on the site requirements.)

 redisson:
 config:
 clusterServersConfig:
 # Idle connection timeout, in milliseconds.
 idleConnectionTimeout: 100000
 # Connection timeout, in milliseconds.
 connectTimeout: 10000
 # Command waiting timeout, in milliseconds.
 timeout: 3000
 # Number of retry times upon a command failure.
 retryAttempts: 3

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 83

 # Interval for retrying sending commands, in milliseconds.
 retryInterval: 1500
 # Interval for reconnecting a replica node upon a failure.
 failedSlaveReconnectionInterval: 3000
 # Interval for checking a replica node upon a failure.
 failedSlaveCheckInterval: 60000
 # Maximum number of subscriptions per connection.
 subscriptionsPerConnection: 5
 # Client name.
 clientName: null
 # Minimum number of idle pub/sub connections.
 subscriptionConnectionMinimumIdleSize: 1
 # Pub/Sub connection pool size.
 subscriptionConnectionPoolSize: 50
 # Minimum number of idle connections per replica node.
 slaveConnectionMinimumIdleSize: 24
 # Connection pool size per replica node.
 slaveConnectionPoolSize: 64
 # Minimum number of idle connections of the master node.
 masterConnectionMinimumIdleSize: 24
 # Connection pool size of the master node.
 masterConnectionPoolSize: 64
 # Master node status scan interval, in milliseconds.
 scanInterval: 1000
 # ping connection interval.
 pingConnectionInterval: 3000
 # Whether to keep the connection alive.
 keepAlive: false
 # The tcpNoDelay setting is enabled by default.
 tcpNoDelay: false

Step 5 Access the DCS instance by using Redisson (a Java client).
● Example of using Redisson to connect to a single-node, master/standby, or

Proxy Cluster DCS Redis instance with a single connection
Config config = new Config();
SingleServerConfig singleServerConfig = config.useSingleServer();
singleServerConfig.setAddress("redis://host:port");
// singleServerConfig.setPassword("********");
RedissonClient redisson = Redisson.create(config);
//Test concurrentMap. Data is synchronized to Redis when the put method is used.
ConcurrentMap<String, Object> map = redisson.getMap("FirstMap");
map.put("wanger", "male");
map.put("zhangsan", "nan");
map.put("lisi", "female");
ConcurrentMap resultMap = redisson.getMap("FirstMap");
System.out.println("resultMap==" + resultMap.keySet());
//Test Set
Set mySet = redisson.getSet("MySet");
mySet.add("wanger");
mySet.add("lisi");
Set resultSet = redisson.getSet("MySet");
System.out.println("resultSet===" + resultSet.size());
//Test Queue
Queue myQueue = redisson.getQueue("FirstQueue");
myQueue.add("wanger");
myQueue.add("lili");
myQueue.add("zhangsan");
myQueue.peek();
myQueue.poll();
Queue resultQueue = redisson.getQueue("FirstQueue");
System.out.println("resultQueue===" + resultQueue);
//Close the connection.
redisson.shutdown();

● Example of using Redisson to connect to a single-node, master/standby, or
Proxy Cluster DCS Redis instance with connection pooling
//1. Initialization
Config config = new Config();
SingleServerConfig singleServerConfig = config.useSingleServer();

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 84

singleServerConfig.setAddress("redis://host:6379");
//Set the maximum number of connections in the connection pool of the master node to 500.
singleServerConfig.setConnectionPoolSize(500);
//The connections will be automatically closed and removed from the connection pool. The time unit
is millisecond.
singleServerConfig.setIdleConnectionTimeout(10000);
RedissonClient redisson = Redisson.create(config);
//Test concurrentMap. Data is synchronized to Redis when the put method is used.
ConcurrentMap<String, Object> map = redisson.getMap("FirstMap");
map.put("wanger", "male");
map.put("zhangsan", "nan");
map.put("lisi", "female");
ConcurrentMap resultMap = redisson.getMap("FirstMap");
System.out.println("resultMap==" + resultMap.keySet());
//Test Set
Set mySet = redisson.getSet("MySet");
mySet.add("wanger");
mySet.add("lisi");
Set resultSet = redisson.getSet("MySet");
System.out.println("resultSet===" + resultSet.size());
//Test Queue
Queue myQueue = redisson.getQueue("FirstQueue");
myQueue.add("wanger");
myQueue.add("lili");
myQueue.add("zhangsan");
myQueue.peek();
myQueue.poll();
Queue resultQueue = redisson.getQueue("FirstQueue");
System.out.println("resultQueue===" + resultQueue);
//Close the connection.
redisson.shutdown();

● Example of using Redisson to connect to a Redis Cluster
Config config = new Config();
ClusterServersConfig clusterServersConfig = config.useClusterServers();
clusterServersConfig.addNodeAddress("redis://host:port");
//Set a password.
// clusterServersConfig.setPassword("********");
RedissonClient redisson = Redisson.create(config);
ConcurrentMap<String, Object> map = redisson.getMap("FirstMap");
map.put("wanger", "male");
map.put("zhangsan", "nan");
map.put("lisi", "female");
ConcurrentMap resultMap = redisson.getMap("FirstMap");
System.out.println("resultMap==" + resultMap.keySet());
//2. Test Set
Set mySet = redisson.getSet("MySet");
mySet.add("wanger");
mySet.add("lisi");
Set resultSet = redisson.getSet("MySet");
System.out.println("resultSet===" + resultSet.size());
//3. Test Queue
Queue myQueue = redisson.getQueue("FirstQueue");
myQueue.add("wanger");
myQueue.add("lili");
myQueue.add("zhangsan");
myQueue.peek();
myQueue.poll();
Queue resultQueue = redisson.getQueue("FirstQueue");
System.out.println("resultQueue===" + resultQueue);
//Close the connection.
redisson.shutdown();

----End

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 85

3.2.2.2 Lettuce Integration with Spring Boot

Prerequisites
● A DCS Redis instance has been created and is in the Running state.
● An ECS has been created. For details about how to create an ECS, see Elastic

Cloud Server User Guide.
● If the ECS runs the Linux OS, ensure that the Java compilation environment

has been installed on the ECS.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to
be accessed.

For details, see Viewing Details of a DCS Instance.

Step 2 Log in to the ECS.

Step 3 Use Maven to add the following dependency to the pom.xml file:

NO TE

● Since Spring Boot 2.0, Lettuce is used as the default client for connections.
● Spring Boot 2.6.6 and Lettuce 6.1.8 are used.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

Step 4 Use Spring Boot integrated with Lettuce to connect to the instance.
● Example of using Spring Boot and Lettuce to connect to a single-node,

master/standby, or Proxy Cluster DCS Redis instance with a single connection

a. Add the Redis configuration to the application.properties configuration
file.
spring.redis.host=host
spring.redis.database=0
spring.redis.password=pwd
spring.redis.port=port

b. Redis configuration class RedisConfiguration
@Bean
public RedisTemplate<String, Object> redisTemplate(LettuceConnectionFactory
lettuceConnectionFactory) {
 RedisTemplate<String, Object> template = new RedisTemplate<>();
 template.setConnectionFactory(lettuceConnectionFactory);
 // Replace the default JdkSerializationRedisSerializer with Jackson2JsonRedisSerializer to
serialize and deserialize the Redis value.
 Jackson2JsonRedisSerializer<Object> jackson2JsonRedisSerializer = new
Jackson2JsonRedisSerializer<>(Object.class);
 ObjectMapper mapper = new ObjectMapper();
 mapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
 mapper.activateDefaultTyping(LaissezFaireSubTypeValidator.instance,
 ObjectMapper.DefaultTyping.NON_FINAL, JsonTypeInfo.As.PROPERTY);
 jackson2JsonRedisSerializer.setObjectMapper(mapper);
 StringRedisSerializer stringRedisSerializer = new StringRedisSerializer();
 // String serialization of keys

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 86

 template.setKeySerializer(stringRedisSerializer);
 // String serialization of hash keys
 template.setHashKeySerializer(stringRedisSerializer);
 // Jackson serialization of values
 template.setValueSerializer(jackson2JsonRedisSerializer);
 // Jackson serialization of hash values
 template.setHashValueSerializer(jackson2JsonRedisSerializer);
 template.afterPropertiesSet();
 return template;
}

c. Redis operation class RedisUtil
 /**
 * Obtain data from the cache.
 * @param key
 * @return value
 */
 public Object get(String key){
 return key==null?null:redisTemplate.opsForValue().get(key);
 }

 /**
 * Write data to the cache.
 * @param key
 * @param value
 * @return true (successful) false (failed)
 */
 public boolean set(String key,Object value) {
 try {
 redisTemplate.opsForValue().set(key, value);
 return true;
 } catch (Exception e) {
 e.printStackTrace();
 return false;
 }
 }

d. Write the controller class for testing.
 @RestController
public class HelloRedis {
 @Autowired
 RedisUtil redisUtil;

 @RequestMapping("/setParams")
 @ResponseBody
 public String setParams(String name) {
 redisUtil.set("name", name);
 return "success";
 }

 @RequestMapping("/getParams")
 @ResponseBody
 public String getParams(String name) {
 System.out.println("--------------" + name + "-------------");
 String retName = redisUtil.get(name) + "";
 return retName;
 }

 }

● Example of using Spring Boot and Lettuce to connect to a single-node,
master/standby, or Proxy Cluster DCS Redis instance with connection pooling

a. Add the following dependency in addition to the preceding Maven
dependency:
<dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-pool2</artifactId>
</dependency>

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 87

b. Add the Redis configuration to the application.properties configuration
file.
spring.redis.host=host
spring.redis.database=0
spring.redis.password=pwd
spring.redis.port=port
Connection timeout.
spring.redis.timeout=1000
Maximum number of connections in the connection pool. A negative value indicates no limit.
spring.redis.lettuce.pool.max-active=50
Minimum number of idle connections in the connection pool.
spring.redis.lettuce.pool.min-idle=5
Maximum number of idle connections in the connection pool.
spring.redis.lettuce.pool.max-idle=50
Maximum time for waiting for connections in the connection pool. A negative value indicates
no limit.
spring.redis.lettuce.pool.max-wait=5000
Interval for scheduling an eviction thread.
spring.redis.pool.time-between-eviction-runs-millis=2000

c. Redis connection configuration class RedisConfiguration
@Bean
public RedisTemplate<String, Object> redisTemplate(LettuceConnectionFactory
lettuceConnectionFactory) {
 lettuceConnectionFactory.setShareNativeConnection(false);
 RedisTemplate<String, Object> template = new RedisTemplate<>();
 template.setConnectionFactory(lettuceConnectionFactory);
 // Use Jackson2JsonRedisSerializer to replace the default JdkSerializationRedisSerializer to
serialize and deserialize the Redis value.
 Jackson2JsonRedisSerializer<Object> jackson2JsonRedisSerializer = new
Jackson2JsonRedisSerializer<>(Object.class);
 ObjectMapper mapper = new ObjectMapper();
 mapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
 mapper.activateDefaultTyping(LaissezFaireSubTypeValidator.instance,
 ObjectMapper.DefaultTyping.NON_FINAL, JsonTypeInfo.As.PROPERTY);
 jackson2JsonRedisSerializer.setObjectMapper(mapper);
 StringRedisSerializer stringRedisSerializer = new StringRedisSerializer();
 // String serialization of keys
 template.setKeySerializer(stringRedisSerializer);
 // String serialization of hash keys
 template.setHashKeySerializer(stringRedisSerializer);
 // Jackson serialization of values
 template.setValueSerializer(jackson2JsonRedisSerializer);
 // Jackson serialization of hash values
 template.setHashValueSerializer(jackson2JsonRedisSerializer);
 template.afterPropertiesSet();
 return template;
}

● Example code for using Spring Boot and Lettuce to connect to Redis Cluster
using a single connection

a. Add the Redis configuration to the application.properties configuration
file.
spring.redis.cluster.nodes=host:port
spring.redis.cluster.max-redirects=3
spring.redis.password= pwd
Automated refresh interval
spring.redis.lettuce.cluster.refresh.period=60
Enable automated refresh
spring.redis.lettuce.cluster.refresh.adaptive=true
spring.redis.timeout=60

b. Redis configuration class RedisConfiguration (automated topology refresh
must be enabled).
@Bean
public LettuceConnectionFactory lettuceConnectionFactory() {
 String[] nodes = clusterNodes.split(",");
 List<RedisNode> listNodes = new ArrayList();

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 88

 for (String node : nodes) {
 String[] ipAndPort = node.split(":");
 RedisNode redisNode = new RedisNode(ipAndPort[0], Integer.parseInt(ipAndPort[1]));
 listNodes.add(redisNode);
 }
 RedisClusterConfiguration redisClusterConfiguration = new RedisClusterConfiguration();
 redisClusterConfiguration.setClusterNodes(listNodes);
 redisClusterConfiguration.setPassword(password);
 redisClusterConfiguration.setMaxRedirects(maxRedirects);
 // Configure automated topology refresh.
 ClusterTopologyRefreshOptions topologyRefreshOptions =
ClusterTopologyRefreshOptions.builder()
 .enablePeriodicRefresh(Duration.ofSeconds(period)) // Refresh the topology periodically.
 .enableAllAdaptiveRefreshTriggers() // Refresh the topology based on events.
 .build();

 ClusterClientOptions clusterClientOptions = ClusterClientOptions.builder()
 // Redis command execution timeout. Only when the command execution times out will a
reconnection be triggered using the new topology.
 .timeoutOptions(TimeoutOptions.enabled(Duration.ofSeconds(period)))
 .topologyRefreshOptions(topologyRefreshOptions)
 .build();
 LettuceClientConfiguration clientConfig = LettucePoolingClientConfiguration.builder()
 .commandTimeout(Duration.ofSeconds(timeout))
 .readFrom(ReadFrom.REPLICA_PREFERRED) // Preferentially read data from the replicas.
 .clientOptions(clusterClientOptions)
 .build();
 LettuceConnectionFactory factory = new
LettuceConnectionFactory(redisClusterConfiguration, clientConfig);
 return factory;
}

@Bean
public RedisTemplate<String, Object> redisTemplate(LettuceConnectionFactory
lettuceConnectionFactory) {
 RedisTemplate<String, Object> template = new RedisTemplate<>();
 template.setConnectionFactory(lettuceConnectionFactory);
 // Use Jackson2JsonRedisSerializer to replace the default JdkSerializationRedisSerializer to
serialize and deserialize the Redis value.
 Jackson2JsonRedisSerializer<Object> jackson2JsonRedisSerializer = new
Jackson2JsonRedisSerializer<>(Object.class);
 ObjectMapper mapper = new ObjectMapper();
 mapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
 mapper.activateDefaultTyping(LaissezFaireSubTypeValidator.instance,
 ObjectMapper.DefaultTyping.NON_FINAL, JsonTypeInfo.As.PROPERTY);
 jackson2JsonRedisSerializer.setObjectMapper(mapper);
 StringRedisSerializer stringRedisSerializer = new StringRedisSerializer();
 // String serialization of keys
 template.setKeySerializer(stringRedisSerializer);
 // String serialization of hash keys
 template.setHashKeySerializer(stringRedisSerializer);
 // Jackson serialization of values
 template.setValueSerializer(jackson2JsonRedisSerializer);
 // Jackson serialization of hash values
 template.setHashValueSerializer(jackson2JsonRedisSerializer);
 template.afterPropertiesSet();
 return template;
}

● Example code for using Spring Boot and Lettuce to connect to Redis Cluster
with connection pooling
a. Add the Redis configuration to the application.properties configuration

file.
spring.redis.cluster.nodes=host:port
spring.redis.cluster.max-redirects=3
spring.redis.password=pwd
spring.redis.lettuce.cluster.refresh.period=60
spring.redis.lettuce.cluster.refresh.adaptive=true
Connection timeout.

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 89

spring.redis.timeout=60s
Maximum number of connections in the connection pool. A negative value indicates no limit.
spring.redis.lettuce.pool.max-active=50
Minimum number of idle connections in the connection pool.
spring.redis.lettuce.pool.min-idle=5
Maximum number of idle connections in the connection pool.
spring.redis.lettuce.pool.max-idle=50
Maximum time for waiting for connections in the connection pool. A negative value indicates
no limit.
spring.redis.lettuce.pool.max-wait=5000
Interval for scheduling an eviction thread.
spring.redis.lettuce.pool.time-between-eviction-runs=2000

b. Redis configuration class RedisConfiguration (automated topology refresh
must be enabled).
@Bean
 public LettuceConnectionFactory lettuceConnectionFactory() {
 GenericObjectPoolConfig genericObjectPoolConfig = new GenericObjectPoolConfig();
 genericObjectPoolConfig.setMaxIdle(maxIdle);
 genericObjectPoolConfig.setMinIdle(minIdle);
 genericObjectPoolConfig.setMaxTotal(maxActive);
 genericObjectPoolConfig.setMaxWait(Duration.ofMillis(maxWait));

genericObjectPoolConfig.setTimeBetweenEvictionRuns(Duration.ofMillis(timeBetweenEvictionRu
nsMillis));
 String[] nodes = clusterNodes.split(",");
 List<RedisNode> listNodes = new ArrayList();
 for (String node : nodes) {
 String[] ipAndPort = node.split(":");
 RedisNode redisNode = new RedisNode(ipAndPort[0], Integer.parseInt(ipAndPort[1]));
 listNodes.add(redisNode);
 }
 RedisClusterConfiguration redisClusterConfiguration = new RedisClusterConfiguration();
 redisClusterConfiguration.setClusterNodes(listNodes);
 redisClusterConfiguration.setPassword(password);
 redisClusterConfiguration.setMaxRedirects(maxRedirects);
 // Configure automated topology refresh.
 ClusterTopologyRefreshOptions topologyRefreshOptions =
ClusterTopologyRefreshOptions.builder()
 .enablePeriodicRefresh(Duration.ofSeconds(period)) // Refresh the topology periodically.
 .enableAllAdaptiveRefreshTriggers() // Refresh the topology based on events.
 .build();

 ClusterClientOptions clusterClientOptions = ClusterClientOptions.builder()
 // Redis command execution timeout. Only when the command execution times out will a
reconnection be triggered using the new topology.
 .timeoutOptions(TimeoutOptions.enabled(Duration.ofSeconds(period)))
 .topologyRefreshOptions(topologyRefreshOptions)
 .build();
 LettuceClientConfiguration clientConfig = LettucePoolingClientConfiguration.builder()
 .commandTimeout(Duration.ofSeconds(timeout))
 .poolConfig(genericObjectPoolConfig)
 .readFrom(ReadFrom.REPLICA_PREFERRED) // Preferentially read data from the replicas.
 .clientOptions(clusterClientOptions)
 .build();
 LettuceConnectionFactory factory = new
LettuceConnectionFactory(redisClusterConfiguration, clientConfig);
 return factory;
 }

@Bean
public RedisTemplate<String, Object> redisTemplate(LettuceConnectionFactory
lettuceConnectionFactory) {
 lettuceConnectionFactory.setShareNativeConnection(false);
 RedisTemplate<String, Object> template = new RedisTemplate<>();
 template.setConnectionFactory(lettuceConnectionFactory);
 // Use Jackson2JsonRedisSerializer to replace the default JdkSerializationRedisSerializer to
serialize and deserialize the Redis value.
 Jackson2JsonRedisSerializer<Object> jackson2JsonRedisSerializer = new
Jackson2JsonRedisSerializer<>(Object.class);

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 90

 ObjectMapper mapper = new ObjectMapper();
 mapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
 mapper.activateDefaultTyping(LaissezFaireSubTypeValidator.instance,
 ObjectMapper.DefaultTyping.NON_FINAL, JsonTypeInfo.As.PROPERTY);
 jackson2JsonRedisSerializer.setObjectMapper(mapper);
 StringRedisSerializer stringRedisSerializer = new StringRedisSerializer();
 // String serialization of keys
 template.setKeySerializer(stringRedisSerializer);
 // String serialization of hash keys
 template.setHashKeySerializer(stringRedisSerializer);
 // Jackson serialization of values
 template.setValueSerializer(jackson2JsonRedisSerializer);
 // Jackson serialization of hash values
 template.setHashValueSerializer(jackson2JsonRedisSerializer);
 template.afterPropertiesSet();
 return template;
}

host is the IP address/domain name of the DCS instance, port is the port number
of the DCS instance, and pwd is the password of the DCS instance. Specify these
parameters as required before running the code. Connection pooling is
recommended. Adjust parameters such as TimeOut, MaxTotal (maximum number
of connections), MinIdle (minimum number of idle connections), MaxIdle
(maximum number of idle connections), and MaxWait (maximum waiting time)
based on service requirements.

----End

3.2.2.3 Clients in Python

Access a DCS Redis instance through redis-py on an ECS in the same VPC. For
more information about how to use other Redis clients, visit the Redis official
website.

NO TE

Use redis-py to connect to single-node, master/standby, and Proxy Cluster instances and
redis-py-cluster to connect to Redis Cluster instances.

Prerequisites
● A DCS Redis instance has been created and is in the Running state.
● An ECS has been created. For details about how to create an ECS, see Elastic

Cloud Server User Guide.
● If the ECS runs the Linux OS, ensure that the Python compilation environment

has been installed on the ECS.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to
be accessed.

For details, see Viewing Details of a DCS Instance.

Step 2 Log in to the ECS.

The following uses CentOS as an example to describe how to access an instance
using a Python client.

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 91

https://redis.io/clients
https://redis.io/clients

Step 3 Access the DCS Redis instance.

If the system does not provide Python, run the following yum command to install
it:

yum install python

NO TE

The Python version must be 3.6 or later. If the default Python version is earlier than 3.6,
perform the following operations to change it:

1. Run the rm -rf python command to delete the Python symbolic link.

2. Run the ln -s pythonX.X.X python command to create another Python link. In the
command, X.X.X indicates the Python version number.

● If the instance is a single-node, master/standby, or Proxy Cluster instance:

a. Install Python and redis-py.

i. If the system does not provide Python, run the following yum
command to install it.

ii. Run the following command to download and decompress the redis-
py package:
wget https://github.com/andymccurdy/redis-py/archive/
master.zip
unzip master.zip

iii. Go to the directory where the decompressed redis-py package is
saved, and install redis-py.
python setup.py install
After the installation, run the python command. redis-py have been
successfully installed if the following command output is displayed:

Figure 3-1 Running the python command

b. Use the redis-py client to connect to the instance. In the following steps,
commands are executed in CLI mode. (Alternatively, write the commands
into a Python script and then execute the script.)

i. Run the python command to enter the CLI mode. You have entered
CLI mode if the following command output is displayed:

Figure 3-2 Entering the CLI mode

ii. Run the following command to access the chosen DCS Redis
instance:
r = redis.StrictRedis(host='XXX.XXX.XXX.XXX', port=6379, password='******');

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 92

XXX.XXX.XXX.XXX indicates the IP address/domain name of the DCS
instance and 6379 is an example port number of the instance. For
details about how to obtain the IP address/domain name and port,
see Step 1. Change the IP address/domain name and port as
required. ****** indicates the password used for logging in to the
chosen DCS Redis instance. This password is defined during DCS
Redis instance creation.
You have successfully accessed the instance if the following
command output is displayed. Enter commands to perform read and
write operations on the database.

Figure 3-3 Redis connected successfully

● If the instance is a Redis Cluster instance:

a. Install the redis-py-cluster client.

i. Download the released version.
wget https://github.com/Grokzen/redis-py-cluster/releases/
download/2.1.3/redis-py-cluster-2.1.3.tar.gz

ii. Decompress the package.
tar -xvf redis-py-cluster-2.1.3.tar.gz

iii. Go to the directory where the decompressed redis-py-cluster package
is saved, and install redis-py-cluster.
python setup.py install

b. Access the DCS Redis instance by using redis-py-cluster.
In the following steps, commands are executed in CLI mode.
(Alternatively, write the commands into a Python script and then execute
the script.)

i. Run the python command to enter the CLI mode.
ii. Run the following command to access the chosen DCS Redis

instance:
>>> from rediscluster import RedisCluster

>>> startup_nodes = [{"host": "192.168.0.143", "port": "6379"}]

>>> rc = RedisCluster(startup_nodes=startup_nodes, decode_responses=True)

>>> rc.set("foo", "bar")
True
>>> print(rc.get("foo"))
'bar'

----End

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 93

3.2.2.4 go-redis
Access a DCS Redis instance through go-redis on an ECS in the same VPC. For
more information about how to use other Redis clients, visit the Redis official
website.

Prerequisites
● A DCS Redis instance has been created and is in the Running state.
● An ECS has been created. For details about how to create an ECS, see Elastic

Cloud Server User Guide.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to
be accessed.

For details, see Viewing Details of a DCS Instance.

Step 2 Log in to the ECS.

A Windows ECS is used as an example.

Step 3 Install Visual Studio Community 2017 on the ECS.

Step 4 Start Visual Studio and create a project. The project name can be customized. In
this example, the project name is set to redisdemo.

Step 5 Import the dependency package of go-redis and enter go get github.com/go-
redis/redis on the terminal.

Step 6 Write the following code:
package main

import (
 "fmt"
 "github.com/go-redis/redis"
)

func main() {
 // Single-node
 rdb := redis.NewClient(&redis.Options{
 Addr: "host:port",
 Password: "********", // no password set
 DB: 0, // use default DB
 })

 val, err := rdb.Get("key").Result()
 if err != nil {
 if err == redis.Nil {
 fmt.Println("key does not exists")
 return
 }
 panic(err)
 }
 fmt.Println(val)

 //Cluster
 rdbCluster := redis.NewClusterClient(&redis.ClusterOptions{
 Addrs: []string{"host:port"},
 Password: "********",
 })
 val1, err1 := rdbCluster.Get("key").Result()

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 94

https://redis.io/clients
https://redis.io/clients

 if err1 != nil {
 if err == redis.Nil {
 fmt.Println("key does not exists")
 return
 }
 panic(err)
 }
 fmt.Println(val1)
}

host:port are the IP address/domain name and port number of the DCS Redis
instance. For details about how to obtain the IP address/domain name and port,
see Step 1. Change the IP address/domain name and port as required. ********
indicates the password used to log in to the DCS Redis instance. This password is
defined during DCS Redis instance creation.

Step 7 Run the go build -o test main.go command to package the code into an
executable file, for example, test.

CA UTION

To run the package in the Linux OS, set the following parameters before
packaging:
set GOARCH=amd64
set GOOS=linux

Step 8 Run the ./test command to access the DCS instance.

----End

3.2.2.5 hiredis in C++
Access a DCS Redis instance through hiredis on an ECS in the same VPC. For more
information about how to use other Redis clients, visit the Redis official website.

NO TE

The operations described in this section apply only to single-node, master/standby, and
Proxy Cluster instances. To use C++ to connect to a Redis Cluster instance, see the C++
Redis client description.

Prerequisites
● A DCS Redis instance has been created and is in the Running state.
● An ECS has been created. For details about how to create an ECS, see Elastic

Cloud Server User Guide.
● If the ECS runs the Linux OS, ensure that the GCC compilation environment

has been installed on the ECS.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to
be accessed.

For details, see Viewing Details of a DCS Instance.

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 95

https://redis.io/clients
https://github.com/sewenew/redis-plus-plus?_ga=2.64990636.268662337.1603553558-977760105.1588733325#redis-cluster
https://github.com/sewenew/redis-plus-plus?_ga=2.64990636.268662337.1603553558-977760105.1588733325#redis-cluster

Step 2 Log in to the ECS.

The following uses CentOS as an example to describe how to access an instance in
C++.

Step 3 Install GCC, Make, and hiredis.

If the system does not provide a compiling environment, run the following yum
command to install the environment:

yum install gcc make

Step 4 Run the following command to download and decompress the hiredis package:

wget https://github.com/redis/hiredis/archive/master.zip

unzip master.zip

Step 5 Go to the directory where the decompressed hiredis package is saved, and compile
and install hiredis.

make

make install

Step 6 Access the DCS instance by using hiredis.

The following describes connection and password authentication of hiredis. For
more information on how to use hiredis, visit the Redis official website.

1. Edit the sample code for connecting to a DCS instance, and then save the
code and exit.
vim connRedis.c
Example:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <hiredis.h>
int main(int argc, char **argv) {
 unsigned int j;
 redisContext *conn;
 redisReply *reply;
 if (argc < 3) {
 printf("Usage: example {instance_ip_address} 6379 {password}\n");
 exit(0);
 }
 const char *hostname = argv[1];
 const int port = atoi(argv[2]);
 const char *password = argv[3];
 struct timeval timeout = { 1, 500000 }; // 1.5 seconds
 conn = redisConnectWithTimeout(hostname, port, timeout);
 if (conn == NULL || conn->err) {
 if (conn) {
 printf("Connection error: %s\n", conn->errstr);
 redisFree(conn);
 } else {
 printf("Connection error: can't allocate redis context\n");
 }
 exit(1);
 }
 /* AUTH */
 reply = redisCommand(conn, "AUTH %s", password);
 printf("AUTH: %s\n", reply->str);
 freeReplyObject(reply);

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 96

 /* Set */
 reply = redisCommand(conn,"SET %s %s", "welcome", "Hello, DCS for Redis!");
 printf("SET: %s\n", reply->str);
 freeReplyObject(reply);

 /* Get */
 reply = redisCommand(conn,"GET welcome");
 printf("GET welcome: %s\n", reply->str);
 freeReplyObject(reply);

 /* Disconnects and frees the context */
 redisFree(conn);
 return 0;
}

2. Run the following command to compile the code:

gcc connRedis.c -o connRedis -I /usr/local/include/hiredis -lhiredis

If an error is reported, locate the directory where the hiredis.h file is saved
and modify the compilation command.

After the compilation, an executable connRedis file is obtained.

3. Run the following command to access the chosen DCS Redis instance:

./connRedis {redis_ip_address} 6379 {password}
{redis_instance_address} indicates the IP address/domain name of DCS
instance and 6379 is an example port number of DCS instance. For details
about how to obtain the IP address/domain name and port, see Step 1.
Change the IP address/domain name and port as required. {password}
indicates the password used to log in to the chosen DCS Redis instance. This
password is defined during DCS Redis instance creation.

You have successfully accessed the instance if the following command output
is displayed:
AUTH: OK
SET: OK
GET welcome: Hello, DCS for Redis!

NO TICE

If an error is reported, indicating that the hiredis library files cannot be found, run
the following commands to copy related files to the system directories and add
dynamic links:

mkdir /usr/lib/hiredis

cp /usr/local/lib/libhiredis.so.0.13 /usr/lib/hiredis/

mkdir /usr/include/hiredis

cp /usr/local/include/hiredis/hiredis.h /usr/include/hiredis/

echo '/usr/local/lib' >>;>>;/etc/ld.so.conf

ldconfig

Replace the locations of the so and .h files with actual ones before running the
commands.

----End

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 97

3.2.2.6 C#
Access a DCS Redis instance through C# Client StackExchange.Redis on an ECS in
the same VPC. For more information about how to use other Redis clients, visit
the Redis official website.

Prerequisites
● A DCS Redis instance has been created and is in the Running state.
● An ECS has been created. For details about how to create an ECS, see Elastic

Cloud Server User Guide.
● If the ECS runs the Linux OS, ensure that the GCC compilation environment

has been installed on the ECS.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to
be accessed.

For details, see Viewing Details of a DCS Instance.

Step 2 Log in to the ECS.

A Windows ECS is used as an example.

Step 3 Install Visual Studio Community 2017 on the ECS.

Step 4 Start Visual Studio 2017 and create a project.

Set the project name to redisdemo.

Step 5 Install StackExchange.Redis by using the NuGet package manager of Visual Studio.

Access the NuGet package manager console according to Figure 3-4, and enter
Install-Package StackExchange.Redis -Version 2.2.79. (The version number is
optional).

Figure 3-4 Accessing the NuGet package manager console

Step 6 Write the following code, and use the String Set and Get methods to test the
connection.

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 98

https://redis.io/clients

using System;
using StackExchange.Redis;

namespace redisdemo
{
 class Program
 {
 // redis config
 private static ConfigurationOptions connDCS =
ConfigurationOptions.Parse("10.10.38.233:6379,password=********,connectTimeout=2000");
 //the lock for singleton
 private static readonly object Locker = new object();
 //singleton
 private static ConnectionMultiplexer redisConn;
 //singleton
 public static ConnectionMultiplexer getRedisConn()
 {
 if (redisConn == null)
 {
 lock (Locker)
 {
 if (redisConn == null || !redisConn.IsConnected)
 {
 redisConn = ConnectionMultiplexer.Connect(connDCS);
 }
 }
 }
 return redisConn;
 }
 static void Main(string[] args)
 {
 redisConn = getRedisConn();
 var db = redisConn.GetDatabase();
 //set get
 string strKey = "Hello";
 string strValue = "DCS for Redis!";
 Console.WriteLine(strKey + ", " + db.StringGet(strKey));

 Console.ReadLine();
 }
 }
}

10.10.38.233:6379 contains an example IP address/domain name and port number
of the DCS Redis instance. For details about how to obtain the IP address/domain
name and port, see Step 1. Change the IP address/domain name and port as
required. ******** indicates the password used for logging in to the chosen DCS
Redis instance. This password is defined during DCS Redis instance creation.

Step 7 Run the code. You have successfully accessed the instance if the following
command output is displayed:
Hello, DCS for Redis!

For more information about other commands of StackExchange.Redis, visit
StackExchange.Redis.

----End

3.2.2.7 PHP

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 99

https://stackexchange.github.io/StackExchange.Redis/

3.2.2.7.1 phpredis

Access a DCS Redis instance through phpredis on an ECS in the same VPC. For
more information about how to use other Redis clients, visit the Redis official
website.

NO TE

The operations described in this section apply only to single-node, master/standby, and
Proxy Cluster instances. To use phpredis to connect to a Redis Cluster instance, see the
phpredis description.

Prerequisites
● A DCS Redis instance has been created and is in the Running state.
● An ECS has been created. For details about how to create an ECS, see Elastic

Cloud Server User Guide.
● If the ECS runs the Linux OS, ensure that the GCC compilation environment

has been installed on the ECS.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to
be accessed.

For details, see Viewing Details of a DCS Instance.

Step 2 Log in to the ECS.

The following uses CentOS as an example to describe how to access an instance
through phpredis.

Step 3 Install GCC-C++ and Make compilation components.

yum install gcc-c++ make

Step 4 Install the PHP development package and CLI tool.

Run the following yum command to install the PHP development package:

yum install php-devel php-common php-cli

After the installation is complete, run the following command to query the PHP
version and check whether the installation is successful:

php --version

Step 5 Install the phpredis client.

1. Download the source phpredis package.
wget http://pecl.php.net/get/redis-5.3.7.tgz
This version is used as an example. To download phpredis clients of other
versions, visit the Redis or PHP official website.

2. Decompress the source phpredis package.
tar -zxvf redis-5.3.7.tgz
cd redis-5.3.7

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 100

https://redis.io/clients
https://redis.io/clients
https://github.com/phpredis/phpredis/blob/develop/cluster.markdown#readme

3. Command before compilation.
phpize

4. Configure the php-config file.
./configure --with-php-config=/usr/bin/php-config
The location of the file varies depending on the OS and PHP installation
mode. You are advised to locate the directory where the file is saved before
the configuration.
find / -name php-config

5. Compile and install the phpredis client.
make && make install

6. After the installation, add the extension configuration in the php.ini file to
reference the Redis module.
vim /etc/php.ini
Add the following configuration:
extension = "/usr/lib64/php/modules/redis.so"

NO TE

The redis.so file may be saved in a different directory from php.ini. Run the following
command to locate the directory:
find / -name php.ini

7. Save the configuration and exit. Then, run the following command to check
whether the extension takes effect:
php -m |grep redis
If the command output contains redis, the phpredis client environment has
been set up.

Step 6 Access the DCS instance by using phpredis.

1. Edit a redis.php file.
<?php
 $redis_host = "{redis_instance_address}";
 $redis_port = 6379;
 $user_pwd = "{password}";
 $redis = new Redis();
 if ($redis->connect($redis_host, $redis_port) == false) {
 die($redis->getLastError());
 }
 if ($redis->auth($user_pwd) == false) {
 die($redis->getLastError());
 }
 if ($redis->set("welcome", "Hello, DCS for Redis!") == false) {
 die($redis->getLastError());
 }
 $value = $redis->get("welcome");
 echo $value;
 $redis->close();
?>

{redis_instance_address} indicates the IP address/domain name of DCS
instance and 6379 is an example port number of DCS instance. For details
about how to obtain the IP address/domain name and port, see Step 1.
Change the IP address/domain name and port as required. {password}
indicates the password used to log in to the chosen DCS Redis instance. This
password is defined during DCS Redis instance creation. If password-free
access is enabled, shield the if statement for password authentication.

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 101

2. Run the php redis.php command to access the DCS instance.

----End

3.2.2.7.2 Predis

Access a DCS Redis instance through Predis on an ECS in the same VPC. For more
information about how to use other Redis clients, visit the Redis official website.

Prerequisites
● A DCS Redis instance has been created and is in the Running state.
● An ECS has been created. For details about how to create an ECS, see Elastic

Cloud Server User Guide.
● If the ECS runs the Linux OS, ensure that the PHP compilation environment

has been installed on the ECS.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to
be accessed.

For details, see Viewing Details of a DCS Instance.

Step 2 Log in to the ECS.

Step 3 Install the PHP development package and CLI tool. Run the following yum
command:

yum install php-devel php-common php-cli

Step 4 After the installation is complete, check the version number to ensure that the
installation is successful.

php --version

Step 5 Download the Predis package to the /usr/share/php directory.

1. Run the following command to download the Predis source file:
wget https://github.com/predis/predis/archive/refs/tags/v1.1.10.tar.gz

NO TE

This version is used as an example. To download Predis clients of other versions, visit
the Redis or PHP official website.

2. Run the following commands to decompress the source Predis package:
tar -zxvf predis-1.1.10.tar.gz

3. Rename the decompressed Predis directory predis and move it to /usr/share/
php/.
mv predis-1.1.10 predis

Step 6 Edit a file used to connect to Redis.
● Example of using redis.php to connect to a single-node, master/standby, or

Proxy Cluster DCS Redis instance:
<?php
 require 'predis/autoload.php';

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 102

https://redis.io/clients

 Predis\Autoloader::register();
 $client = new Predis\Client([
 'scheme' => 'tcp' ,
 'host' => '{redis_instance_address}' ,
 'port' => {port} ,
 'password' => '{password}'
]);
 $client->set('foo', 'bar');
 $value = $client->get('foo');
 echo $value;
?>

● Example code for using redis-cluster.php to connect to Redis Cluster:
<?php
 require 'predis/autoload.php';
 $servers = array(
 'tcp://{redis_instance_address}:{port}'
);
 $options = array('cluster' => 'redis');
 $client = new Predis\Client($servers, $options);
 $client->set('foo', 'bar');
 $value = $client->get('foo');
 echo $value;
?>

{redis_instance_address} indicates the actual IP address or domain name of the
DCS instance and {port} is the actual port number of DCS instance. For details
about how to obtain the IP address/domain name and port, see Step 1. Change
the IP address/domain name and port as required. {password} indicates the
password used to log in to the chosen DCS Redis instance. This password is
defined during DCS Redis instance creation. If password-free access is required,
delete the line that contains "password".

Step 7 Run the php redis.php command to access the DCS instance.

----End

3.2.2.8 Node.js
Access a DCS Redis instance through Node.js on an ECS in the same VPC. For more
information about how to use other Redis clients, visit the Redis official website.

NO TE

The operations described in this section apply only to single-node, master/standby, and
Proxy Cluster instances. To use Node.js to connect to a Redis Cluster instance, see Node.js
Redis client description.

Prerequisites
● A DCS Redis instance has been created and is in the Running state.
● An ECS has been created. For details about how to create an ECS, see Elastic

Cloud Server User Guide.
● If the ECS runs the Linux OS, ensure that the GCC compilation environment

has been installed on the ECS.

Procedure
● For client servers running Ubuntu (Debian series):

Step 1 View the IP address/domain name and port number of the DCS Redis instance to
be accessed.

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 103

https://redis.io/clients
https://github.com/NodeRedis/cluster-key-slot
https://github.com/NodeRedis/cluster-key-slot

For details, see Viewing Details of a DCS Instance.

Step 2 Log in to the ECS.

Step 3 Install Node.js.

apt install nodejs-legacy

If the preceding command does not work, run the following commands:

wget https://nodejs.org/dist/v0.12.4/node-v0.12.4.tar.gz --no-check-certificate

tar -xvf node-v4.28.5.tar.gz

cd node-v4.28.5

./configure

make

make install

NO TE

After the installation is complete, run the node --version command to query the Node.js
version to check whether the installation is successful.

Step 4 Install the node package manager (npm).

apt install npm

Step 5 Install the Redis client ioredis.

npm install ioredis

Step 6 Edit the sample script for connecting to a DCS instance.

Add the following content to the ioredisdemo.js script, including information
about connection and data reading.

var Redis = require('ioredis');
var redis = new Redis({
 port: 6379, // Redis port
 host: '192.168.0.196', // Redis host
 family: 4, // 4 (IPv4) or 6 (IPv6)
 password: '******',
 db: 0
});
redis.set('foo', 'bar');
redis.get('foo', function (err, result) {
 console.log(result);
});
// Or using a promise if the last argument isn't a function
redis.get('foo').then(function (result) {
 console.log(result);
});
// Arguments to commands are flattened, so the following are the same:
redis.sadd('set', 1, 3, 5, 7);
redis.sadd('set', [1, 3, 5, 7]);
// All arguments are passed directly to the redis server:
redis.set('key', 100, 'EX', 10);

host indicates the example IP address/domain name of DCS instance and port
indicates the port number of DCS instance. For details about how to obtain the IP
address/domain name and port, see Step 1. Change the IP address/domain name

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 104

and port as required. ****** indicates the password used for logging in to the
chosen DCS Redis instance. This password is defined during DCS Redis instance
creation.

Step 7 Run the sample script to access the chosen DCS instance.

node ioredisdemo.js

----End

● For client servers running CentOS (Red Hat series):

Step 1 View the IP address/domain name and port number of the DCS Redis instance to
be accessed.

For details, see .

Step 2 Log in to the ECS.

Step 3 Install Node.js.

yum install nodejs

If the preceding command does not work, run the following commands:

wget https://nodejs.org/dist/v0.12.4/node-v0.12.4.tar.gz --no-check-certificate

tar -xvf node-v0.12.4.tar.gz

cd node-v0.12.4

./configure

make

make install

NO TE

After the installation is complete, run the node --version command to query the Node.js
version to check whether the installation is successful.

Step 4 Install npm.

yum install npm

Step 5 Install the Redis client ioredis.

npm install ioredis

Step 6 Edit the sample script for connecting to a DCS instance.

Add the following content to the ioredisdemo.js script, including information
about connection and data reading.

var Redis = require('ioredis');
var redis = new Redis({
 port: 6379, // Redis port
 host: '192.168.0.196', // Redis host
 family: 4, // 4 (IPv4) or 6 (IPv6)
 password: '******',
 db: 0
});
redis.set('foo', 'bar');

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 105

redis.get('foo', function (err, result) {
 console.log(result);
});
// Or using a promise if the last argument isn't a function
redis.get('foo').then(function (result) {
 console.log(result);
});
// Arguments to commands are flattened, so the following are the same:
redis.sadd('set', 1, 3, 5, 7);
redis.sadd('set', [1, 3, 5, 7]);
// All arguments are passed directly to the redis server:
redis.set('key', 100, 'EX', 10);

host indicates the example IP address/domain name of DCS instance and port
indicates the port number of DCS instance. For details about how to obtain the IP
address/domain name and port, see Step 1. Change the IP address/domain name
and port as required. ****** indicates the password used for logging in to the
chosen DCS Redis instance. This password is defined during DCS Redis instance
creation.

Step 7 Run the sample script to access the chosen DCS instance.

node ioredisdemo.js

----End

3.2.3 Accessing a DCS Redis 4.0 or 5.0 Instance on the Console
Access a DCS Redis instance through Web CLI. This function is supported only by
DCS Redis 4.0 and 5.0 instances, and not by DCS Redis 3.0 instances.

NO TE

● Do not enter sensitive information in Web CLI to avoid disclosure.
● Keys and values cannot contain spaces.
● If the value is empty, nil is returned after the GET command is executed.

Prerequisites
The DCS Redis 4.0 or 5.0 instance you want to access through Web CLI is in the
Running state.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 In the row containing the desired instance, choose More > Connect to Redis to go
to the Web CLI login page.

Step 5 Enter the password of the DCS instance. On Web CLI, select the current Redis
database, enter a Redis command in the command box, and press Enter.

----End

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 106

3.2.4 Accessing a DCS Memcached Instance
Access a DCS Memcached instance using telnet on an ECS in the same VPC.

Prerequisites
● The DCS Memcached instance you want to access is in the Running state.
● An ECS has been created on which the client has been installed. For details on

how to create ECSs, see the Elastic Cloud Server User Guide.

NO TE

1. An ECS can communicate with a DCS instance that belongs to the same VPC and is
configured with the same security group.

2. If the ECS and DCS instance are not in the same VPC, you can establish a VPC
peering connection to achieve network connectivity between the ECS and DCS
instance. For details, see Does DCS Support Cross-VPC Access?

3. If different security groups have been configured for the ECS and DCS instance, you
can set security group rules to achieve network connectivity between the ECS and
DCS instance. For details, see Security Group Configurations.

● All annotations in example code have been deleted.
● All command lines and code blocks are UTF-8 encoded. Using another

encoding scheme will cause compilation problems or even command failures.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 On the Cache Manager page, click the name of the DCS Memcached instance you
want to access. Obtain the IP address and port number of the instance.

Step 5 Access the chosen DCS Memcached instance.

1. Log in to the ECS.
2. Run the following command to check whether telnet is installed on the ECS:

which telnet
If the directory in which the telnet is installed is displayed, telnet has been
installed on the ECS. If the client installation directory is not displayed, install
the telnet manually.

NO TE

– If telnet has not been installed in Linux, run the yum -y install telnet command to
install it.

– In the Windows OS, choose Start > Control Panel > Programs > Programs and
Features > Turn Windows features on or off, and enable telnet.

3. Run the following command to access the chosen DCS Memcached instance:
telnet {ip} {port}

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 107

In this command: {ip} indicates the IP address of the DCS Memcached
instance. {port} indicates the port number of the DCS Memcached instance.
Both the IP address and the port number are obtained in Step 4.
When you have successfully accessed the chosen DCS Memcached instance,
information similar to the following is displayed:
Trying XXX.XXX.XXX.XXX...
Connected to XXX.XXX.XXX.XXX.
Escape character is '^]'.

NO TE

– If Password-protected is not enabled for the instance, run the following
commands directly after the instance is accessed successfully.

– If Password-protected is enabled for the instance, attempts to perform operations
on the instance will result in the message "ERROR authentication required",
indicating that you do not have the required permissions. In this case, enter auth
username@password to authenticate first. username and password are that used
for accessing the DCS Memcached instance.

Example commands for using the DCS Memcached instance (lines in bold are
the commands and the other lines are the command output):
set hello 0 0 6
world!
STORED
get hello
VALUE hello 0 6
world!
END

----End

3.3 Viewing Details of a DCS Instance
On the DCS console, you can view DCS instance details.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click an instance to go to the instance details page.

Step 5 Search for DCS instances using any of the following methods:
● Search by keyword.

Enter a keyword to search.
● Select attributes and enter their keywords to search.

Currently, you can search by name, ID, connection address (IP address:port
number), AZ, status, instance type, cache engine, and CPU.

For more information on how to search, click the question mark to the right of the
search box.

Step 6 On the DCS instance list, click the name of a DCS instance to display more details
about it. Table 3-1 describes the parameters.

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 108

Table 3-1 Parameters on the Basic Information page of a DCS instance

Section Parameter Description

Instance
Details

Name Name of the chosen instance. To modify the
instance name, click the icon.

Status State of the chosen instance.

ID ID of the chosen instance.

Cache
Engine

Cache engine used by the DCS instance, which can
be Redis or Memcached. If the cache engine is Redis,
it is followed by the version number, for example,
Redis 3.0.

Instance
Type

Type of the selected instance. Currently, supported
types include single-node, master/standby, Proxy
Cluster, and Redis Cluster.

Cache Size Specification of the chosen instance.

Used/
Available
Memory
(MB)

The used memory space and maximum available
memory space of the chosen instance.
The used memory space includes:
● Size of data stored on the DCS instance
● Size of Redis-server buffers (including client

buffer and repl-backlog) and internal data
structures

CPU CPU of the DCS instance. This parameter is
displayed only for DCS Redis instances.

Created Time at which the chosen instance started to be
created.

Run Time at which the instance was created.

Maintenanc
e

Time range for any scheduled maintenance activities
on cache nodes of this DCS instance. To modify the
time window, click the icon.

Description Description of the chosen DCS instance. To modify
the description, click the icon.

Connectio
n

Password
Protected

Currently, password-protected access and password-
free access are supported.

IP Address IP address and port number of the chosen instance.

Network AZ Availability zone in which the cache node running
the selected DCS instance resides.

VPC VPC in which the chosen instance resides.

Subnet Subnet in which the chosen instance resides.

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 109

Section Parameter Description

Security
Group

Security group that controls access to the chosen

instance. To modify the security group, click the
icon.
This parameter is displayed only for DCS Redis 3.0
instances. DCS for Redis 4.0 and 5.0 are based on
VPC endpoints and do not support security groups.

Instance
Topology

- Hover the mouse pointer over an instance to view
its metrics, or click the icon of an instance to view
its historical metrics.
Topologies are supported only for master/standby
and cluster instances.

----End

Distributed Cache Service
User Guide 3 Getting Started

2022-04-12 110

4 Operation Guide

4.1 Operating DCS Instances

4.1.1 Modifying DCS Instance Specifications
On the DCS console, you can scale a DCS Redis or Memcached instance to a larger
or smaller capacity.

NO TE

● Modify instance specifications during off-peak hours.
● You can only change the instance type of single-node or master/standby DCS Redis 3.0

instances.
● If your DCS instances are too old to support scaling, contact technical support to

upgrade the instances.
● Services may be interrupted for seconds during the modification. Therefore, services

connected to Redis must support reconnection.

Change of the Instance Type
● Supported instance type changes:

– From single-node to master/standby: Supported by Redis 3.0 and
Memcached, and not by Redis 4.0 and 5.0.

– From master/standby to Proxy Cluster: Supported by Redis 3.0, and not by
Redis 4.0 and 5.0.
If the data of a master/standby DCS Redis 3.0 instance is stored in
multiple databases, or in non-DB0 databases, the instance cannot be
changed to the Proxy Cluster type. A master/standby instance can be
changed to the Proxy Cluster type only if its data is stored only on DB0.

– From cluster types to other types: Not supported.
● Impact of instance type changes:

– From single-node to master/standby for a DCS Redis 3.0 instance:
The instance cannot be connected for several seconds and remains read-
only for about 1 minute.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 111

– From master/standby to Proxy Cluster for a DCS Redis 3.0 instance:
The instance cannot be connected and remains read-only for 5 to 30
minutes.

Scaling
● The following table lists scaling options supported by different DCS

instances.

Table 4-1 Scaling options supported by different DCS instances

Cache
Engine

Single-Node Master/
Standby

Redis Cluster Proxy Cluster

Redis 3.0 Scaling up/
down

Scaling up/
down

N/A Scaling up

Redis 4.0 Scaling up/
down

Scaling up/
down

Scaling up/
down

N/A

Redis 5.0 Scaling up/
down

Scaling up/
down

Scaling up/
down

N/A

Memcach
ed

Scaling up/
down

Scaling up/
down

N/A N/A

NO TE

If the reserved memory of a DCS Redis 3.0 or Memcached instance is insufficient, the
scaling may fail when the memory is used up.

● Impact of scaling:
– Single-node and master/standby

▪ A DCS Redis 4.0 or 5.0 instance will be disconnected for several
seconds and remain read-only for about 1 minute.

▪ A DCS Redis 3.0 instance will be disconnected and remain read-only
for 5 to 30 minutes.

▪ For scaling up, only the memory of the instance is expanded. The
CPU processing capability is not improved.

▪ Data of single-node instances may be lost because they do not
support data persistence. After scaling, check whether the data is
complete and import data if required. If there is important data, use
a migration tool to migrate the data to other instances for backup.

▪ Backup records of master/standby instances cannot be restored after
scaling down.

– Cluster

▪ If the shard quantity is not decreased, the instance can always be
connected, but the CPU usage will increase, compromising
performance by up to 20%, and the latency will increase during data

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 112

migration. During scaling up, new Redis Server nodes are added, and
data is automatically balanced to the new nodes.

▪ Nodes will be deleted if the shard quantity decreases . To prevent
disconnection, ensure that the deleted nodes are not directly
referenced in your application.

▪ Ensure that the used memory of each node is less than 70% of the
maximum memory per node of the new flavor. Otherwise, you
cannot perform the scale-in.

▪ If the memory becomes full during scaling due to a large amount of
data being written, scaling will fail.

▪ Scaling involves data migration. The latency for accessing the key
being migrated increases. For a Redis Cluster instance, ensure that
the client can properly process the MOVED and ASK commands.
Otherwise, requests will fail.

▪ Before scaling, perform cache analysis to ensure that no big keys (≥
512 MB) exist in the instance. Otherwise, scaling may fail.

▪ Backup records created before scaling cannot be restored.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Choose More > Modify Specifications in the row containing the DCS instance.

Step 5 On the Modify Specifications page, select the desired specification and click Next.

Step 6 Click Submit.

On the displayed Background Tasks page, view the modification status. For more
information, see Viewing Background Tasks.

Specification modification of a single-node or master/standby DCS instance takes
about 5 to 30 minutes to complete, while that of a cluster DCS instance takes a
longer time. After an instance is successfully modified, it changes to the Running
state.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 113

NO TE

● If the specification modification of a single-node DCS instance fails, the instance is
temporarily unavailable for use. The specification remains unchanged. Some
management operations (such as parameter configuration and specification
modification) are temporarily not supported. After the specification modification is
completed in the backend, the instance changes to the new specification and becomes
available for use again.

● If the specification modification of a master/standby or cluster DCS instance fails, the
instance is still available for use with its original specifications. Some management
operations (such as parameter configuration, backup, restoration, and specification
modification) are temporarily not supported. Remember not to read or write more data
than allowed by the original specifications; otherwise, data loss may occur.

● After the specification modification is successful, the new specification of the instance
takes effect.

----End

4.1.2 Restarting DCS Instances
On the DCS console, you can restart one or multiple DCS instances at a time.

NO TICE

● After a single-node DCS instance is restarted, data will be deleted from the
instance.

● While a DCS instance is restarting, it cannot be read from or written to.

● An attempt to restart a DCS instance while it is being backed up may result in a
failure.

Prerequisites

The DCS instances you want to restart are in the Running or Faulty state.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 On the Cache Manager page, select one or more DCS instances you want to
restart.

Step 5 Click Restart above the DCS instance list.

Step 6 In the displayed dialog box, click Yes.

It takes 1 to 30 minutes to restart DCS instances. After DCS instances are
restarted, their status changes to Running.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 114

NO TE

● By default, only the instance process is restarted. If you select Force restart for a DCS
Redis 3.0 or Memcached instance, its VM will be restarted. Force restart is not
supported by DCS Redis 4.0 or later instances.

● To restart a single instance, you can also click Restart in the same row as the instance.

● The time required for restarting a DCS instance depends on the cache size of the
instance.

----End

4.1.3 Deleting DCS Instances
On the DCS console, you can delete one or multiple DCS instances at a time. You
can also delete all instance creation tasks that have failed to run.

NO TICE

● After a DCS instance is deleted, the instance data will also be deleted without
backup. In addition, any backup data of the instance will be deleted. Therefore,
download the backup files of the instance for permanent storage before
deleting the instance.

● If the instance is in cluster mode, all cluster nodes will be deleted.

Prerequisites
● The DCS instances you want to delete have been created.

● The DCS instances you want to delete are in the Running or Faulty state.

Procedure

Deleting DCS Instances

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 On the Cache Manager page, select one or more DCS instances you want to
delete.

DCS instances in the Creating, Restarting, Upgrading, Resizing, Clearing data,
Backing up, or Restoring state cannot be deleted.

Step 5 Choose More > Delete above the instance list.

Step 6 In the displayed dialog box, click Yes.

It takes 1 to 30 minutes to delete DCS instances.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 115

NO TE

To delete a single instance, choose Operation > More > Delete in the same row as the
instance.

----End

Deleting Instance Creation Tasks That Have Failed to Run

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 If there are DCS instances that have failed to be created, Instance Creation
Failures is displayed above the instance list.

Step 5 Click the icon or the number of failed tasks next to Instance Creation Failures.

The Instance Creation Failures dialog box is displayed.

Step 6 Choose failed instance creation tasks to delete.
● To delete all failed tasks, click Delete All above the task list.
● To delete a single failed task, click Delete in the same row as the task.

----End

4.1.4 Performing a Master/Standby Switchover for a DCS
Instance

On the DCS console, you can manually switch the master and standby nodes of a
DCS instance. This operation is used for special purposes, for example, releasing all
service connections or terminating ongoing service operations.

Only master/standby instances support a master/standby node switchover.

NO TICE

● Services may be interrupted for up to 10 seconds during the switchover. Before
performing a switchover, ensure that your application supports reconnection.

● During a master/standby node switchover, a large amount of resources will be
consumed for data synchronization between the master and standby nodes.
You are advised to perform this operation during off-peak hours.

● Data of the maser and standby nodes is synchronized asynchronously.
Therefore, a small amount of data that is being operated on during the
switchover may be lost.

Prerequisites

The DCS instance for which you want to perform a master/standby node
switchover is in the Running state.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 116

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 In the Operation column of the instance, choose More > Master/Standby
Switchover.

----End

4.1.5 Clearing DCS Instance Data
On the DCS console, you can clear data only for DCS Redis 4.0 and 5.0 instances.

Clearing instance data cannot be undone and cleared data cannot be
recovered. Exercise caution when performing this operation.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Select one or more DCS2.0 instances to clear.

Step 5 Click Clear data above the instance list.

Step 6 In the displayed dialog box, click Yes.

----End

4.1.6 Exporting DCS Instance List
On the DCS console, you can export DCS instance information in full to an Excel
file.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click the search bar. In the displayed drop-down list, select the filter criteria to
query the desired DCS instances.

Step 5 Click above the instance list.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 117

Click the export result displayed in the lower left corner of the page.

----End

4.1.7 Command Renaming
After creating a DCS Redis 4.0 or 5.0 instance, you can rename the following
critical commands: COMMAND, KEYS, FLUSHDB, FLUSHALL, and HGETALL.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 In the Operation column of an instance, choose More > Command Renaming.

Step 5 Select a command, enter a new name, and click OK.

NO TE

● You can rename multiple commands at a time.

● The new command names will take effect only after you restart the instance. Remember
the new command names because they will not be displayed on the console for security
purposes.

● To use the original name of a command, rename the command again.

● The new name must contain at least four characters.

----End

4.2 Managing DCS Instances

4.2.1 Configuration Notice
● In most cases, different DCS instance management operations cannot proceed

concurrently. If you initiate a new management operation while the current
operation is in progress, the DCS console prompts you to initiate the new
operation again after the current operation is complete. DCS instance
management operations include:
– Creating a DCS instance
– Configuring parameters
– Restarting a DCS instance
– Changing the instance password
– Resetting the instance password
– Scaling, backing up, or restoring an instance

● You can restart a DCS instance while it is being backed up, but the backup
task will be forcibly interrupted and is likely to result in a backup failure.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 118

NO TICE

In the event that a cache node of a DCS instance is faulty:
● The instance remains in the Running state and you can continue to read from

and write to the instance. This is achieved thanks to the high availability of
DCS.

● Cache nodes can recover from internal faults automatically. Manual fault
recovery is also supported.

● Certain operations (such as parameter configuration, password change or
resetting, backup, restoration, and specification modification) in the
management zone are not supported during fault recovery. You can contact
technical support or perform these operations after the cache nodes recover
from faults.

4.2.2 Modifying Configuration Parameters
You can modify the configuration parameters of your DCS instance to optimize
DCS performance based on your requirements.

For example, if you do not need data persistence, set appendonly to no.

After the instance configuration parameters are modified, the modification takes
effect immediately without the need to manually restart the instance. For a cluster
instance, the modification takes effect on all shards.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 On the Cache Manager page, click the name of the DCS instance you want to
configure.

Step 5 Choose Instance Configuration > Parameters.

Step 6 On the Parameters tab page, click Modify.

Step 7 Modify parameters based on your requirements.

Table 4-2 and Table 4-3 describe the parameters. In most cases, retain the default
values.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 119

Table 4-2 DCS Redis instance configuration parameters

Parameter Description Value Range Default
Value

timeout The maximum amount
of time (in seconds) a
connection between a
client and the DCS
instance can be allowed
to remain idle before the
connection is
terminated. A setting of
0 means that this
function is disabled.

0–7200 seconds 0

appendfsync Controls how often
fsync() transfers cached
data to the disk. Note
that some OSs will
perform a complete data
transfer but some others
only make a "best-
effort" attempt.
There are three settings:
no: fsync() is never
called. The OS will flush
data when it is ready.
This mode offers the
highest performance.
always: fsync() is called
after every write to the
AOF. This mode is very
slow, but also very safe.
everysec: fsync() is called
once per second. This
mode provides a
compromise between
safety and performance.

● no
● always
● everysec

everysec

appendonly Indicates whether to log
each modification of the
instance. By default,
data is written to disks
asynchronously in Redis.
If this function is
disabled, recently-
generated data might be
lost in the event of a
power failure. Options:
yes: enabled
no: disabled

● yes
● no

yes

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 120

Parameter Description Value Range Default
Value

client-output-
buffer-limit-
slave-soft-
seconds

Number of seconds that
the output buffer
remains above client-
output-buffer-slave-
soft-limit before the
client is disconnected.

0–60 60

client-output-
buffer-slave-
hard-limit

Hard limit (in bytes) on
the output buffer of
replica clients. Once the
output buffer exceeds
the hard limit, the client
is immediately
disconnected.

Depends on the instance
type and specifications.

Depends
on the
instance
type and
specificat
ions.

client-output-
buffer-slave-
soft-limit

Soft limit (in bytes) on
the output buffer of
replica clients. Once the
output buffer exceeds
the soft limit and
continuously remains
above the limit for the
time specified by the
client-output-buffer-
limit-slave-soft-seconds
parameter, the client is
disconnected.

Depends on the instance
type and specifications.

Depends
on the
instance
type and
specificat
ions.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 121

Parameter Description Value Range Default
Value

maxmemory-
policy

The deletion policy to
apply when the
maxmemory limit is
reached. Options:
volatile-lru: Evict keys
by trying to remove the
less recently used (LRU)
keys first, but only
among keys that have
an expire set.
(Recommended)
allkeys-lru: Evict keys by
trying to remove the
LRU keys first.
volatile-random: evict
keys randomly, but only
evict keys with an expire
set.
allkeys-random: Evict
keys randomly.
volatile-ttl: Evict keys
with an expire set, and
try to evict keys with a
shorter time to live (TTL)
first.
noeviction: Do not
delete any keys and only
return errors when the
memory limit was
reached.
volatile-lfu: Evict keys
by trying to remove the
less frequently used
(LFU) keys first, but only
among keys that have
an expire set.
allkeys-lfu: Evict keys by
trying to remove the LFU
keys first.

Depends on the instance
version.

Depends
on the
instance
version
and type.

lua-time-limit Maximum time allowed
for executing a Lua
script (in milliseconds).

100–5000 5,000

master-read-
only

Sets the instance to be
read-only. All write
operations will fail.

● yes
● no

no

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 122

Parameter Description Value Range Default
Value

maxclients The maximum number
of clients allowed to be
concurrently connected
to a DCS instance.

Depends on the instance
type and specifications.

Depends
on the
instance
type and
specificat
ions.

proto-max-
bulk-len

Maximum size of a
single element request
(in bytes).

1,048,576–536,870,912 536,870,9
12

repl-backlog-
size

The replication backlog
size (bytes). The backlog
is a buffer that
accumulates replica data
when replicas are
disconnected from the
master. When a replica
reconnects, a partial
synchronization is
performed to
synchronize the data
that was missed while
replicas were
disconnected.

16,384–1,073,741,824 1,048,576

repl-backlog-
ttl

The amount of time, in
seconds, before the
backlog buffer is
released, starting from
the last a replica was
disconnected. The value
0 indicates that the
backlog is never
released.

0–604,800 3,600

repl-timeout Replication timeout (in
seconds).

30–3,600 60

hash-max-
ziplist-entries

Hashes are encoded
using a memory efficient
data structure when the
number of entries in
hashes is less than the
value of this parameter.

1–10,000 512

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 123

Parameter Description Value Range Default
Value

hash-max-
ziplist-value

Hashes are encoded
using a memory efficient
data structure when the
biggest entry in hashes
does not exceed the
length threshold
indicated by this
parameter.

1–10,000 64

set-max-
intset-entries

When a set is composed
of just strings that
happen to be integers in
radix 10 in the range of
64 bit signed integers,
sets are encoded using a
memory efficient data
structure.

1–10,000 512

zset-max-
ziplist-entries

Sorted sets are encoded
using a memory efficient
data structure when the
number of entries in
sorted sets is less than
the value of this
parameter.

1–10,000 128

zset-max-
ziplist-value

Sorted sets are encoded
using a memory efficient
data structure when the
biggest entry in sorted
sets does not exceed the
length threshold
indicated by this
parameter.

1–10,000 64

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 124

Parameter Description Value Range Default
Value

latency-
monitor-
threshold

Threshold time in
latency monitoring. Unit:
millisecond.
Set to 0: Latency
monitoring is disabled.
Set to more than 0: All
with at least this many
milliseconds of latency
will be logged.
By running the LATENCY
command, you can
perform operations
related to latency
monitoring, such as
obtaining statistical
data, and configuring
and enabling latency
monitoring.

0–86,400,000 ms 0

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 125

Parameter Description Value Range Default
Value

notify-
keyspace-
events

Controls which keyspace
events notifications are
enabled for. If the value
is an empty string, this
function is disabled. A
combination of different
values can be used to
enable notifications for
multiple event types.
Possible values:
K: Keyspace events,
published with the
__keyspace@__ prefix.
E: Keyevent events,
published with
__keyevent@__ prefix
g: Generic commands
(non-type specific) such
as DEL, EXPIRE, and
RENAME
$: String commands
l: List commands
s: Set commands
h: Hash commands
z: Sorted set commands
x: Expired events (events
generated every time a
key expires)
e: Evicted events (events
generated when a key is
evicted for maxmemory)
A: an alias for "g$lshzxe"
The parameter value
must contain either K or
E. A cannot be used
together with any of the
characters in "g$lshzxe".
For example, the value
Kl means that Redis will
notify Pub/Sub clients
about keyspace events
and list commands. The
value AKE means Redis
will notify Pub/Sub
clients about all events.

See the parameter
description.

Ex

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 126

Parameter Description Value Range Default
Value

slowlog-log-
slower-than

Redis records queries
that exceed a specified
execution time.
slowlog-log-slower-
than is the maximum
time allowed, in
microseconds, for
command execution. If
this threshold is
exceeded, Redis will
record the query.

0–1,000,000 10,000

slowlog-max-
len

The maximum allowed
number of slow queries
that can be logged. Slow
query log consumes
memory, but you can
reclaim this memory by
running the SLOWLOG
RESET command.

0–1000 128

NO TE

1. For more information about the parameters described in Table 4-2, visit https://
redis.io/topics/memory-optimization.

2. The latency-monitor-threshold parameter is usually used for fault location. After
locating faults based on the latency information collected, change the value of latency-
monitor-threshold to 0 to avoid unnecessary latency.

3. More about the notify-keyspace-events parameter:
– The parameter setting must contain at least a K or E.
– A is an alias for "g$lshzxe" and cannot be used together with any of the characters

in "g$lshzxe".
– For example, the value Kl means that Redis will notify Pub/Sub clients about

keyspace events and list commands. The value AKE means Redis will notify
Pub/Sub clients about all events.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 127

https://redis.io/topics/memory-optimization
https://redis.io/topics/memory-optimization

Table 4-3 DCS Memcached instance configuration parameters

Parameter Description Value Range Default
Value

timeout The maximum amount of
time (in seconds) a
connection between a
client and the DCS instance
can be allowed to remain
idle before the connection
is terminated. A setting of
0 means that this function
is disabled.

0–7200 seconds 0

maxclients The maximum number of
clients allowed to be
concurrently connected to
a DCS instance.

1000–10,000 10,000

maxmemor
y-policy

The policy applied when
the maxmemory limit is
reached.
For more information
about this parameter, see
https://redis.io/topics/lru-
cache.

volatile-lru
allkeys-lru
volatile-random
allkeys-random
volatile-ttl
noeviction

noevictio
n

reserved-
memory-
percent

Percentage of the
maximum available
memory reserved for
background processes, such
as data persistence and
replication.

0–80 30

Step 8 After you have finished setting the parameters, click Save.

Step 9 Click Yes to confirm the modification.

----End

Typical Scenarios of Configuring Parameters
The following describes how to change the value of the appendonly parameter:

● If Redis is used as the cache and services are insensitive to Redis data losses,
disable instance persistence to improve performance. In this case, change the
value of appendonly to no. For details, see Procedure.

● If Redis is used as the database or services are sensitive to Redis data losses,
enable instance persistence. In this case, change the value of appendonly to
yes. For details, see Procedure. After instance persistence is enabled, you
need to consider the frequency of writing Redis cache data to disks and the
impact on the Redis performance. You can use this parameter together with
the appendfsync parameter. There are three modes of calling fsync():

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 128

https://redis.io/topics/lru-cache
https://redis.io/topics/lru-cache

– no: fsync() is never called. The OS will flush data when it is ready. This
mode offers the highest performance.

– always: fsync() is called after every write to the AOF. This mode is very
slow, but also very safe.

– everysec: fsync() is called once per second, ensuring both data security
and performance.

NO TE

Currently, the appendonly and appendfsync parameters can be modified on the console
only for master/standby and Redis Cluster instances.

4.2.3 Modifying Maintenance Time Window
On the DCS console, after creating a DCS instance, you can modify the
maintenance time window of the DCS instance on the instance's Basic
Information page.

Prerequisites
At least one DCS instance has been created.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click the name of the DCS instance for which you want to modify the
maintenance time window.

Step 5 Click the Basic Information tab. In the Instance Details area, click the icon
next to the Maintenance parameter.

Step 6 Select a new maintenance time window from the drop-down list. Click to save
the modification or to discard the modification.

The modification will take effect immediately, that is, the new maintenance time
window will appear on the Basic Information tab page immediately.

----End

4.2.4 Modifying the Security Group
On the DCS console, after creating a DCS instance, you can modify the security
group of the DCS instance on the instance's Basic Information page.

You can modify the security groups of DCS Redis 3.0 instances but cannot modify
those of DCS Redis 4.0 or 5.0 instances.

Prerequisites
At least one DCS instance has been created.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 129

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click the name of the DCS instance for which you want to modify the security
group.

Step 5 Click the Basic Information tab. In the Network area, click next to the
Security Group parameter.

Step 6 Select a new security group from the drop-down list. Click to save the
modification or to discard the modification.

NO TE

Only the security groups that have been created can be selected from the drop-down list. If
you need to create a security group, follow the procedure described Security Group
Configurations.

The modification will take effect immediately, that is, the new maintenance time
window will appear on the Basic Information tab page immediately.

----End

4.2.5 Viewing Background Tasks
After you initiate certain instance operations such as modifying instance
specifications and changing or resetting a password, a background task will start
for the operation. On the DCS console, you can view the background task status
and clear task information by deleting task records.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click the name of the DCS instance whose background task you want to manage.

Step 5 Click the Background Tasks tab.

A list of background tasks is displayed.

Step 6 Click , specify Start Date and End Date, and click OK to view tasks started in
the corresponding time segment.

● Click to refresh the task status.
● To clear the record of a background task, click Delete in the Operation

column.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 130

NO TE

You can only delete the records of tasks in the Successful or Failed state.

----End

4.2.6 Viewing Data Storage Statistics of a DCS Redis 3.0 Proxy
Cluster Instance

You can view the data storage statistics of all nodes of a DCS Redis 3.0 Proxy
Cluster instance. If data storage is unevenly distributed across nodes, you can scale
up the instance or clear data.

You can only view data storage statistics of DCS Redis 3.0 Proxy Cluster instances.
Instances of other types, for example, master/standby, only have one node, and
you can view the used memory on the instance details page.

NO TE

A Redis Cluster instance has multiple storage nodes. You can check the data storage
statistics of a Redis Cluster instance in its Redis Server monitoring data.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click the name of a DCS Redis cluster instance to view the basic information.

Step 5 Click the Node Management tab.

The data volume of each node in the cluster instance is displayed.

When the data storage capacity of a node in a cluster is used up, you can scale up
the instance according to Modifying DCS Instance Specifications.

----End

4.2.7 Managing Tags
Tags facilitate DCS instance identification and management.

You can add tags to an instance when creating it or add, modify, or delete tags on
the details page of a created instance. Each instance can have a maximum of 10
tags.

A tag consists of a tag key and a tag value. Table 4-4 lists the tag key and value
requirements.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 131

Table 4-4 Tag key and value requirements

Parameter Requirement

Tag key ● Cannot be left blank.
● Must be unique for the same

instance.
● Can contain a maximum of 36

characters.
● Cannot contain the following

characters: =*<>\,|/
● Cannot start or end with a space.

Tag value ● Can contain a maximum of 43
characters.

● Cannot contain the following
characters: =*<>\,|/

● Cannot start or end with a space.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click the name of an instance.

Step 5 Click the Tags tab.

View the tags of the instance.

Step 6 Perform the following operations as required:
● Add a tag

a. Click Add Tag.
If you have created predefined tags, select a predefined pair of tag key
and value. To view predefined tags or create tags, click View predefined
tags. You will be directed to the TMS console.
You can also create new tags by entering Tag key and Tag value.

b. Click OK.
● Modify a tag

In the row containing the tag to be modified, click Edit in the Operation
column. Enter the new tag value and click OK.

● Delete a tag
In the row containing the tag to be deleted, click Delete in the Operation
column. Then click Yes.

----End

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 132

4.2.8 Managing Shards and Replicas
This section describes how to query the shards and replicas of a DCS Redis 4.0 or
5.0 instance and how to manually promote a replica to master.

Currently, this function is supported only by clusterand master/standby DCS Redis
4.0 or 5.0 instances. DCS Redis 3.0 instances and single-node DCS Redis 4.0/5.0
instances do not support this function.

● A master/standby instance has only one shard with one master and one
replica by default. You can view the sharding information on the Shards and
Replicas page. To manually switch the master and replica roles, see
Performing a Master/Standby Switchover for a DCS Instance.

● A cluster instance has multiple shards. Each shard has one master and one
replica by default. On the Shards and Replicas page, you can view the
sharding information and manually switch the master and replica roles. For
details about the number of shards corresponding to different instance
specifications, see Redis Cluster.

Promoting a Replica to Master

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager. The Cache Manager page is
displayed.

Step 4 Click an instance.

Step 5 Click the Shards and Replicas tab.

The page displays all shards in the instance and the list of replicas of each shard.

Step 6 Click to show all replicas of a shard.

Step 7 Click Promote to Master in the row containing another replica which is in the
"Replica" role.

Step 8 Click Yes.

----End

4.2.9 Cache Analysis
By performing big key analysis and hot key analysis, you will have a picture of
keys that occupy a large space and keys that are the most frequently accessed.

Notes on big key analysis:

● All DCS Redis instances support big key analysis.
● During big key analysis, all keys will be traversed. The larger the number of

keys, the longer the analysis takes.
● Perform big key analysis during off-peak hours and avoid automatic backup

periods.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 133

● For a master/standby or cluster instance, the big key analysis is performed on
the standby node, so the impact on the instance is minor. For a single-node
instance, the big key analysis is performed on the only node of the instance
and will reduce the instance access performance by up to 10%. Therefore,
perform big key analysis on single-node instances during off-peak hours.

● A maximum of 100 big key analysis records (20 for Strings and 80 for Lists/
Sets/Zsets/Hashes) are retained for each instance. When this limit is reached,
the oldest records will be deleted to make room for new records. You can also
manually delete records you no longer need.

Notes on hot key analysis:

● Only DCS Redis 4.0 and 5.0 instances support hot key analysis, and the
maxmemory-policy parameter of the instances must be set to allkeys-lfu or
volatile-lfu.

● During hot key analysis, all keys will be traversed. The larger the number of
keys, the longer the analysis takes.

● Perform hot key analysis shortly after peak hours to ensure the accuracy of
the analysis results.

● The hot key analysis is performed on the master node of each instance and
will reduce the instance access performance by up to 10%.

● A maximum of 100 hot key analysis records are retained for each instance.
When this limit is reached, the oldest records will be deleted to make room
for new records. You can also manually delete records you no longer need.

NO TE

Perform big key and hot key analysis during off-peak hours to avoid 100% CPU usage.

Big Key Analysis Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click the name of a DCS Redis instance.

Step 5 Click the Cache Analysis tab.

Step 6 On the Big Key Analysis tab page, manually perform big key analysis or schedule
daily automatic analysis.

Step 7 After an analysis task completes, click View to view the analysis results.

You can view the analysis results of different data types.

NO TE

A maximum of 20 big key analysis records are retained for Strings and 80 are retained for
Lists, Sets, Zsets, and Hashes.

----End

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 134

Hot Key Analysis Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click the name of a DCS Redis instance.

Step 5 Click the Cache Analysis tab.

Step 6 On the Hot Key Analysis tab page, manually perform hot key analysis or schedule
daily automatic analysis.

NO TE

The default value of the maxmemory-policy parameter of a Redis 4.0 or 5.0 instance is
noeviction. To perform hot key analysis, set this parameter to allkeys-lfu or volatile-lfu. If
this parameter has already been set to allkeys-lfu or volatile-lfu, perform hot key analysis
right away.

Step 7 After an analysis task completes, click View to view the analysis results.

The hot key analysis results are displayed.

NO TE

The console displays a maximum of 100 hot key analysis records for each instance.

Table 4-5 Results of hot key analysis

Parameter Description

Key Name of a hot key.

Type Type of a hot key, which can be string, hash, list, set, or
sorted set.

Size Size of the hot key value.

FREQ Reflects the access frequency of a key within a specific
period of time.
FREQ is the logarithmic access frequency counter. The
maximum value of FREQ is 255, which indicates 1
million access requests. After FREQ reaches 255, it will
no longer increment even if access requests continue to
increase. FREQ will decrement by 1 for every minute
during which the key is not accessed.

DataBase Database where a hot key is located.

----End

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 135

4.2.10 Managing IP Address Whitelist
DCS helps you control access to your DCS instances in the following ways,
depending on the deployment mode:

● To control access to Redis 3.0 and Memcached instances, you can use security
groups. Whitelists are not supported. For details about how to configure a
security group, see Security Group Configurations.

● To control access to Redis 4.0 and 5.0 instances, you can use whitelists.
Security groups are not supported.

The following describes how to manage whitelists of a Redis 4.0 or 5.0 instance to
allow access only from whitelisted IP addresses. If no whitelists are added for the
instance or the whitelist function is disabled, all IP addresses that can
communicate with the VPC can access the instance.

Creating a Whitelist Group

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner of the management console and select a region.

NO TE

Select the same region as your application service.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click the name of a DCS instance.

Step 5 Click the Whitelist tab and then click Create Whitelist Group.

Step 6 In the Create Whitelist Group dialogue box, specify Group Name and IP
Address/Range.

Table 4-6 Whitelist parameters

Parameter Description Example

Group Name Whitelist group
name of the
instance.
A maximum of four
whitelist groups can
be created for each
instance.

DCS-test

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 136

Parameter Description Example

IP Address/
Range

A maximum of 20 IP
addresses or IP
address ranges can
be added to an
instance. Separate
multiple IP addresses
or IP address ranges
with commas.
Unsupported IP
address and IP
address range:
0.0.0.0 and 0.0.0/0.

10.10.10.1,10.10.10.10

Step 7 Click OK.

A whitelist group is automatically enabled for the instance once created. Only
whitelisted IP addresses can access the instance.

NO TE

● In the whitelist group list, click Modify to modify the IP addresses or IP address ranges
in a group, and click Delete to delete a whitelist group.

● After whitelist has been enabled, you can click Disable Whitelist above the whitelist
group list to allow all IP addresses connected to the VPC to access the instance.

----End

4.2.11 Viewing Redis Slow Queries
Redis logs queries that exceed a specified execution time. You can view the slow
query log on the DCS console to identify performance issues.

For details about the commands, visit the Redis official website.

Configure slow queries with the following parameters:

● slowlog-log-slower-than: The maximum time allowed, in microseconds, for
command execution. If this threshold is exceeded, Redis will log the
command. The default value is 10,000. That is, if command execution exceeds
10 ms, the command will be logged.

● slowlog-max-len: The maximum allowed number of slow queries that can be
logged. The default value is 128. That is, if the number of slow queries
exceeds 128, the earliest record will be deleted to make room for new ones.

For details about the configuration parameters, see Modifying Configuration
Parameters.

NO TE

You can view the slow queries of a Proxy Cluster DCS Redis 3.0 instance only if the instance
is created after October 14, 2019. If the instance was created earlier, submit a service ticket
to upgrade it. The upgrade adds the slow query function to the console, and does not affect
services.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 137

https://redis.io/commands

Viewing Slow Queries on the Console

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click the name of a DCS instance.

Step 5 Click Slow Queries.

Step 6 Select a start date and an end date to view slow queries within the specified
period.

NO TE

For details about the commands, visit the Redis official website.

----End

4.2.12 Viewing Redis Run Logs
You can create run log files on the DCS console to collect run logs of DCS Redis
instances within a specified period. After the logs are collected, you can download
the log files to view the logs.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click the name of a DCS instance.

Step 5 Click the Run Logs tab.

Step 6 Click Create Log File.

If the instance is the master/standby or cluster type, you can specify the shard and
replica whose run logs you want to collect. If the instance is the single-node type,
logs of the only node of the instance will be collected.

----End

4.2.13 Diagnosing an Instance

Scenario
If a fault or performance issue occurs, you can ask DCS to diagnose your instance
to learn about the cause and impact of the issue and how to handle it.

Restrictions
● DCS Redis 3.0 and Memcached instances do not support diagnosis.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 138

https://redis.io/commands

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner of the management console and select a region
and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click the name of a DCS Redis instance.

Step 5 Click the Instance Diagnosis tab.

Step 6 Specify the tested object and time range, and click Start Diagnosis.
● Tested Object: You can select a single node or all nodes. By default, all nodes

are tested.
● Range: You can specify up to 10 minutes before a point in time in the last 7

days.

Step 7 After the diagnosis is complete, you can view the result in the Test History list. If
the result is abnormal, click View Report for details.

In the report, you can view the cause and impact of abnormal items and
suggestions for handling them.

----End

4.3 Backing Up and Restoring DCS Instances

4.3.1 Overview
On the DCS console, you can back up and restore DCS instances.

Importance of DCS Instance Backup

There is a small chance that inconsistent data could exist in a DCS instance owing
to service system exceptions or problems in loading data from persistence files. In
addition, some systems demand not only high reliability but also data security,
data restoration, and even permanent data storage.

Currently, data in DCS instances can be backed up to OBS. If a DCS instance
becomes faulty, data in the instance can be restored from backup so that service
continuity is not affected.

Backup Modes

DCS instances support the following backup modes:

● Automated backup
You can create a scheduled backup policy on the DCS console. Then, data in
the chosen DCS instances will be automatically backed up at the scheduled
time.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 139

You can choose the days of the week on which scheduled backup will run.
Backup data will be retained for a maximum of seven days. Backup data older
than seven days will be automatically deleted.

The primary purpose of scheduled backups is to create complete data replicas
of DCS instances so that the instance can be quickly restored if necessary.

● Manual backup

Backup requests can also be issued manually. Then, data in the chosen DCS
instances will be permanently backed up to OBS. Backup data can be deleted
manually.

Before performing high-risk operations, such as system maintenance or
upgrade, back up DCS instance data.

Additional Information About Data Backup
● Instance type

– Redis: Only master/standby, Proxy Cluster, and Redis Cluster instances can
be backed up and restored, while single-node instances cannot. However,
you can export data of a single-node instance to an RDB file using redis-
cli. For details, see Can I Export Backup Data of DCS Redis Instances to
RDB Files Using the Console?

– Memcached: Only master/standby instances can be backed up and
restored, while single-node instances cannot.

● Backup mechanisms

Instance data is persisted using the Redis Append Only Files (AOF) feature.

Backup tasks run on standby cache nodes. DCS instance data is backed up by
compressing and storing the data persistence files from the standby cache
node to OBS.

DCS checks instance backup policies once an hour. If a backup policy is
matched, DCS runs a backup task for the corresponding DCS instance.

● Impact on DCS instances during backup

Backup tasks run on standby cache nodes, without incurring any downtime.

In the event of full-data synchronization or heavy instance load, it takes a few
minutes to complete data synchronization. If instance backup starts before
data synchronization is complete, the backup data will be slightly behind the
data in the master cache node.

During instance backup, the standby cache node stops persisting the latest
changes to disk files. If new data is written to the master cache node during
backup, the backup file will not contain the new data.

● Backup time

It is advisable to back up instance data during off-peak periods.

● Storage and pricing of backup files

Backup files are stored to OBS.

● Handling exceptions in scheduled backup

If a scheduled backup task is triggered while the DCS instance is restarting or
being scaled up, the scheduled backup task will be run in the next cycle.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 140

If backing up a DCS instance fails or the backup is postponed because another
task is in progress, DCS will try to back up the instance in the next cycle. A
maximum of three retries are allowed within a single day.

● Retention period of backup data
Scheduled backup files are retained for up to seven days. You can configure
the retention period. At the end of the retention period, most backup files of
the DCS instance will be automatically deleted, but at least one backup file
will be retained.
Manual backup files are retained permanently and need to be manually
deleted.

Data Restoration
● Data restoration process

a. You can initiate a data restoration request using the DCS console.
b. DCS obtains the backup file from OBS.
c. Read/write to the DCS instance is suspended.
d. The original data persistence file of the master cache node is replaced by

the backup file.
e. The new data persistence file (that is, the backup file) is reloaded.
f. Data is restored, and the DCS instance starts to provide read/write service

again.
● Impact on service systems

Restoration tasks run on master cache nodes. During restoration, data cannot
be written into or read from instances.

● Handling data restoration exceptions
If a backup file is corrupted, DCS will try to fix the backup file while restoring
instance data. If the backup file is successfully fixed, the restoration proceeds.
If the backup file cannot be fixed, the master/standby DCS instance will be
changed back to the state in which it was before data restoration.

4.3.2 Configuring a Backup Policy
On the DCS console, you can configure an automatic backup policy. The system
then backs up data in your instances according to the backup policy.

If automatic backup is not required, disable the automatic backup function in the
backup policy.

Prerequisites

At least one master/standby DCS instance has been created.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 141

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click the name of the DCS instance to display more details about the DCS
instance.

Step 5 On the instance details page, click Backups & Restorations.

Step 6 Slide to the right to enable automatic backup. Backup policies will be
displayed.

Table 4-7 Parameters in a backup policy

Parameter Description

Backup Schedule Day of a week on which data in the chosen DCS instance is
automatically backed up.
You can select one or multiple days of a week.

Retention Period
(days)

The number of days that automatically backed up data is
retained.
Backup data will be permanently deleted at the end of
retention period and cannot be restored. Value range: 1–7.

Start Time Time at which automatic backup starts. Value: the full hour
between 00:00 to 23:00
The DCS checks backup policies once every hour. If the
backup start time in a backup policy has arrived, data in
the corresponding instance is backed up.
NOTE

Instance backup takes 5 to 30 minutes. The data added or modified
during the backup process will not be backed up. To reduce the
impact of backup on services, it is recommended that data should
be backed up during off-peak periods.
Only instances in the Running state can be backed up.

Step 7 Click OK.

----End

4.3.3 Manually Backing Up a DCS Instance
You need to manually back up data in DCS instances in a timely manner. This
section describes how to manually back up data in master/standby instances using
the DCS console.

By default, manually backed up data is permanently retained. If backup data is no
longer in use, you can delete it manually.

Prerequisites

At least one master/standby DCS instance is in the Running state.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 142

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click the name of the DCS instance to display more details about the DCS
instance.

Step 5 On the instance details page, click Backups & Restorations.

Step 6 Click Create Backup.

Step 7 In the Create Backup dialog box, click OK.

Information in the Description text box cannot exceed 128 bytes.

NO TE

Instance backup takes 10 to 15 minutes. The data added or modified during the backup
process will not be backed up.

----End

4.3.4 Restoring a DCS Instance
On the DCS console, you can restore backup data to a chosen DCS instance.

Prerequisites
● At least one master/standby or cluster DCS instance is in the Running state.
● A backup task has been run to back up data in the instance to be restored

and the status of the backup task is Succeeded.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click the name of the DCS instance to display more details about the DCS
instance.

Step 5 On the instance details page, click Backups & Restorations.

A list of historical backup tasks is then displayed.

Step 6 Click Restore in the same row as the chosen backup task.

Step 7 Click OK to start instance restoration.

Information in the Description text box cannot exceed 128 bytes.

The Restoration History tab page displays the result of the instance restoration
task.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 143

NO TE

Instance restoration takes 5 to 30 minutes.

While being restored, DCS instances do not accept data operation requests from clients
because existing data is being overwritten by the backup data.

----End

4.3.5 Downloading a Backup File
Due to the limitations of automatic and manual backups (automatically backed
up data can be retained for a maximum of 7 days, and manually backed up data
takes space in OBS), you should download the backup files and permanently save
them on the local host.

This function is supported only by master/standby and cluster instances, and not
by single-node instances.

Prerequisites

The instance has been backed up and the backup is still valid.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click the name of the DCS instance to display more details about the DCS
instance.

Step 5 On the instance details page, click Backups & Restorations.

A list of historical backup tasks is then displayed.

Step 6 Select the historical backup data to be downloaded, and click Download.

Step 7 In the displayed, Download Backup File dialog box, select either of the following
two download methods.

Download methods:
● By URL

a. Set the URL validity period and click Query.
b. Download the backup file by using the URL list.

NO TE

If you choose to copy URLs, use quotation marks to quote the URLs when
running the wget command in Linux. For example:

wget 'https://obsEndpoint.com:443/redisdemo.rdb?
parm01=value01&parm02=value02'

This is because the URL contains the special character and (&), which will
confuse the wget command. Quoting the URL facilitates URL identification.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 144

● By OBS
Perform the procedure as prompted.

----End

4.4 Migrating Data with DCS

4.4.1 Introduction to Migration with DCS

Migration Modes
DCS for Redis provides the following migration modes:

● Backup file import: The data source can be an OBS bucket or a Redis instance.
– Importing data from an OBS bucket: Download the source Redis data and

then upload it to an OBS bucket in the same region as the target DCS
Redis instance. DCS will read the backup data from the OBS bucket and
migrate the data into the target instance.
This migration mode can be used for migrating data from other Redis
vendors or self-hosted Redis to DCS for Redis.

– Importing data from a Redis instance: Back up the source Redis data and
then migrate the backup data to DCS for Redis.

● Migrating data online: If the source and target instances are interconnected
and the SYNC and PSYNC commands are supported in the source instance,
data can be migrated online in full or incrementally from the source to the
target.

The following table describes data migration modes supported by DCS.

NO TE

Data can be migrated only from DCS Redis instances or self-hosted Redis. After data
migration, change the instance connection address to the target instance address.
Data migration is not supported if the DCS instance is created by another service, such as
ROMA Connect, or by calling an API.

Table 4-8 DCS data migration modes

Migrati
on
Mode

Source Target: DCS

Single-Node
and Master/
Standby

Proxy Cluster Redis Cluster

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 145

Importi
ng
backup
files

AOF files in
OBS
NOTE

AOF files
exported from
Redis 4.0/5.0
instances and
other
instances with
RDB
compression
enabled
cannot be
imported.

√ √ ×

RDB files in
OBS

√ √ √

Migrati
ng data
online

DCS for Redis:
single-node
or master/
standby

√ √ √

DCS for Redis:
Proxy Cluster
NOTE

Proxy Cluster
DCS Redis 3.0
instances
cannot be
used as the
source, while
Proxy Cluster
DCS Redis 4.0
or 5.0
instances can.

√ √ √

DCS for Redis:
Redis Cluster

√ √ √

Self-hosted
Redis: single-
node or
master/
standby

√ √ √

Self-hosted
Redis: proxy-
based cluster

√ √ √

Self-hosted
Redis: Redis
Cluster

√ √ √

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 146

Other Redis:
single-node
or master/
standby

× × ×

Other Redis:
proxy-based
cluster

× × ×

Other Redis:
Redis Cluster

× × ×

NO TE

● DCS for Redis refers to Redis instances provided by DCS

● Self-hosted Redis refers to self-hosted Redis on the cloud, from other cloud vendors, or
in on-premises data centers.

● Other Redis refers to Redis services provided by other cloud vendors.

● √: Supported. ×: Not supported.

4.4.2 Importing Backup Files

4.4.2.1 Importing Backup Files from an OBS Bucket

Scenario
Use the DCS console to migrate Redis data from Redis of other vendors or self-
hosted Redis to DCS for Redis.

Simply download the source Redis data and then upload the data to an OBS
bucket in the same region as the target DCS Redis instance. After you have
created a migration task on the DCS console, DCS will read data from the OBS
bucket and data will be migrated to the target instance.

.aof, .rbb, .zip, and .tar.gz files can be uploaded to OBS buckets. You can directly
upload .aof and .rdb files or compress them into .zip or .tar.gz files before
uploading.

Prerequisites
● The OBS bucket must be in the same region as the target DCS Redis instance.
● The data files to be uploaded must be in the .aof, .rdb, .zip, or .tar.gz format.
● To migrate data from a single-node or master/standby Redis instance of other

cloud vendors, create a backup task and download the backup file.
● To migrate data from a cluster Redis instance of other cloud vendors,

download all backup files and upload all of them to the OBS bucket. Each
backup file contains data for a shard of the instance.

● .rdb backup files of self-hosted Redis 5.0 cannot be imported. .rdb backup files
of self-hosted Redis 3.0 or 4.0 can be exported using redis-cli. .rdb files of

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 147

other cloud Redis can be exported only by creating backup tasks, and cannot
be exported by running commands in redis-cli.

● Redis Cluster instances only support .rdb files and do not support .aof files.

Step 1: Prepare the Target DCS Redis Instance
● If a DCS Redis instance is not available, create one first. For details, see

Creating a DCS Redis Instance.
● If a DCS Redis instance is available, you do not need to create a new one.

However, you must clear the instance data before the migration.
– If the target instance is Redis 4.0 or 5.0, clear the data by referring to

Clearing DCS Instance Data.
– If the target instance is a DCS Redis 3.0 instance, run the FLUSHALL

command to clear data.

You can use a DCS Redis 3.0, 4.0, or 5.0 instance as the target instance.

Step 2: Create an OBS Bucket and Upload Backup Files

Step 1 Create an OBS bucket.

1. Log in to the OBS Console and click Create Bucket.
2. Select a region.

The OBS bucket must be in the same region as the target DCS Redis instance.
3. Specify Bucket Name.

The bucket name must meet the naming rules specified on the console.
4. Set Storage Class to Standard, Warm or Cold.
5. Set Bucket Policy to Private, Public Read, or Public Read and Write.
6. Configure default encryption.
7. Click Create Now.

Step 2 Upload the backup data files to the OBS bucket by using OBS Browser+.

If the backup file to be uploaded does not exceed 5 GB, upload the file using the
OBS console by referring to step 3.

If the backup file to be uploaded is larger than 5 GB, perform the following steps
to upload the file using OBS Browser+.

1. Download OBS Browser+.
For details, see section "Downloading OBS Browser+" in Object Storage
Service (OBS) Tools Guide (OBS Browser+).

2. Install OBS Browser+.
For details, see section "Installing OBS Browser+" in Object Storage Service
(OBS) Tools Guide (OBS Browser+).

3. Log in to OBS Browser+.
For details, see section "Logging In to OBS Browser+" in Object Storage
Service (OBS) Tools Guide (OBS Browser+).

4. Creates a bucket.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 148

5. Upload backup data.

Step 3 On the OBS console, upload the backup data files to the OBS bucket.

Perform the following steps if the backup file size does not exceed 5 GB:

1. In the bucket list, click the name of the created bucket.

2. In the navigation pane, choose Objects.

3. On the Objects tab page, click Upload Object.

4. A maximum of 100 files can be uploaded at a time. The total size cannot
exceed 5 GB.

To upload objects, drag files or folders to the Upload Object area or click add
file.

5. Click Upload.

----End

Step 3: Create a Migration Task

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Data Migration.

Step 4 Click Create Backup Import Task.

Step 5 Specify Task Name and Description.

Step 6 Select OBS Bucket as the data source and then select the OBS bucket to which
you have uploaded backup files.

NO TE

You can upload files in the .aof, .rdb, .zip, or .tar.gz format.

Step 7 Select the backup files whose data is to be migrated.

Step 8 Select the target DCS Redis instance prepared in Step 1: Prepare the Target DCS
Redis Instance.

Step 9 Enter the password of the target instance. Click Test Connection to verify the
password.

Step 10 Click Next.

Step 11 Confirm the migration task details and click Submit.

Go back to the data migration task list. After the migration is successful, the task
status changes to Successful.

----End

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 149

4.4.2.2 Importing Backup Files from Redis

Scenario
Use the DCS console to migrate Redis data from self-hosted Redis to DCS for
Redis.

Simply back up your Redis data, create a migration task on the DCS console, and
then import the backup to a DCS Redis instance.

Prerequisites
A master/standby or cluster DCS Redis instance has been created as the target for
the migration. The source instance has data and has been backed up.

Step 1: Obtain the Source Instance Name and Password
Obtain the name of the source Redis instance.

Step 2: Prepare the Target DCS Redis Instance
● If a DCS Redis instance is not available, create one first. For details, see

Creating a DCS Redis Instance.
● If a DCS Redis instance is available, you do not need to create a new one.

However, you must clear the instance data before the migration.
– If the target instance is Redis 4.0 or 5.0, clear the data by referring to

Clearing DCS Instance Data.
– If the target instance is a DCS Redis 3.0 instance, run the FLUSHALL

command to clear data.

You can use a DCS Redis 3.0, 4.0, or 5.0 instance as the target instance.

Step 3: Create a Migration Task

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Data Migration.

Step 4 Click Create Backup Import Task.

Step 5 Enter the task name and description.

Step 6 Set Data Source to Redis.

Step 7 For source Redis, select the instance prepared in Step 1: Obtain the Source
Instance Name and Password.

Step 8 Select the backup task whose data is to be migrated.

Step 9 Select the target instance created in Step 2: Prepare the Target DCS Redis
Instance.

Step 10 Enter the password of the target instance. Click Test Connection to verify the
password.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 150

Step 11 Click Next.

Step 12 Confirm the migration task details and click Submit.

Go back to the data migration task list. After the migration is successful, the task
status changes to Successful.

----End

4.4.3 Migrating Data Online

Scenario
If the source and target instances are interconnected and the SYNC and PSYNC
commands are supported in the source instance, data can be migrated online in
full or incrementally from the source to the target.

Prerequisites
● Before migrating data, read through Introduction to Migration with DCS to

learn about the DCS data migration function and select an appropriate target
instance.

● To migrate data from a single-node or master/standby instance to a Redis
Cluster instance, check if any data exists in DBs other than DB0 in the source
instance. If yes, move the data to DB0 by using the open-source tool Rump.
Otherwise, the migration will fail because a Redis Cluster instance has only
one DB. For details about the migration operations, see Online Migration
with Rump.

Obtaining Information About the Source Redis Instance
● If the source is a cloud Redis instance, obtain its name.
● If the source is self-hosted Redis, obtain its IP address or domain name and

port number.

Prepare the Target DCS Redis Instance
● If a target DCS Redis instance is not available, create one first. For details, see

Creating a DCS Redis Instance.
● If a target instance is available, you do not need to create a new one.

However, you must clear the instance data before the migration. For details,
see Clearing DCS Instance Data.

Requirements on the Network Between the Online Migration Task, Source
Redis, and Target Redis

NO TE

● If the source or target of online migration is Redis in the cloud, the selected Redis
instance must be in the same VPC as the migration task. Otherwise, the migration task
may fail to connect to the cloud Redis instance.

● In special scenarios, if you have enabled cross-VPC access between the migration task
and the cloud Redis instance, the cloud Redis instance and the migration task can be in
different VPCs.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 151

Table 4-9 lists the requirements on the network between the online migration
task, source Redis, and target Redis.

Table 4-9 Requirements on the network between the online migration task,
source Redis, and target Redis

Sour
ce
Redi
s
Type

Targ
et
Redi
s
Type

Network Requirement on Online Migration

Redis
in
the
clou
d

Redis
in
the
cloud

When creating an online migration task, ensure that the online
migration task is in the same VPC as the source and target Redis.
If they are not in the same VPC, enable cross-network access
between the migration task and the source and target Redis. To
enable cross-network access, create a VPC peering connection by
referring to section "VPC Peering Connection" in VPC User Guide.

Redis
in
the
clou
d

Self-
hoste
d
Redis

When creating an online migration task, ensure that the
migration task and the source Redis are in the same VPC. Then,
enable cross-network access between the migration task and the
target Redis.
To enable cross-network access, create a VPC peering connection
by referring to section "VPC Peering Connection" in VPC User
Guide.

Self-
host
ed
Redis

Redis
in
the
cloud

When creating an online migration task, ensure that the
migration task and the target Redis are in the same VPC. Then,
enable cross-network access between the migration task and the
source Redis.
To enable cross-network access, create a VPC peering connection
by referring to section "VPC Peering Connection" in VPC User
Guide.

Self-
host
ed
Redis

Self-
hoste
d
Redis

After creating an online migration task, enable cross-network
access between the migration task and the source and target
Redis, respectively.
To enable cross-network access, create a VPC peering connection
by referring to section "VPC Peering Connection" in VPC User
Guide.

Create a Migration Task

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Data Migration. The migration task list is
displayed.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 152

Step 4 Click Create Online Migration Task.

Step 5 Enter the task name and description.

Step 6 Select a VPC and security group.

Step 7 Click Next.

Step 8 Click Submit.

----End

Configuring the Online Migration Task
Step 1 On the Online Migration tab page, click Configure in the row containing the

online migration task you just created.

Step 2 Specify Migration Type.

Supported migration types are Full and Full + incremental, which are described in
Table 4-10.

Table 4-10 Migration type description

Migration Type Description

Full Suitable for scenarios where services can be interrupted.
Data is migrated at one time. Source instance data
updated during the migration will not be migrated to the
target instance.

Full + incremental Suitable for scenarios requiring minimal service
downtime. The incremental migration parses logs to
ensure data consistency between the source and target
instances.
Once incremental migration starts, it remains
Migrating until you click Stop in the Operation column.
After the migration is stopped, data in the source
instance will not be lost, but data will not be written to
the target instance. When the transmission network is
stable, the delay of incremental migration is within
seconds. The actual delay depends on the transmission
quality of the network link.

Step 3 Configure source Redis and target Redis.

1. Source Redis Type: Select Redis in the cloud or Self-hosted Redis as
required.
– Redis in the cloud: a DCS Redis instance that is in the same VPC as the

migration task
– Self-hosted Redis: self-hosted Redis in another cloud, or in on-premises

data centers. If you select this option, enter Redis addresses.
2. If the instance is password-protected, you can click Test Connection to check

whether the instance password is correct and whether the network is
connected.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 153

Step 4 For Target Instance, select the DCS Redis Instance prepared in Prepare the
Target DCS Redis Instance.

If the instance is password-protected, you can click Test Connection to check
whether the instance password meets the requirements.

NO TE

If the source and target Redis instances are connected but are in different regions of DCS,
you can only select Self-hosted Redis for Target Redis Type and enter the instance
addresses, regardless of whether the target Redis instance is self-hosted or in the cloud.

Step 5 Click Next.

Step 6 Confirm the migration task details and click Submit.

Go back to the data migration task list. After the migration is successful, the task
status changes to Successful.

NO TE

If the migration type is full+incremental, the migration task status will remain Migrating
until you click Stop.

----End

4.5 Managing Passwords

4.5.1 DCS Instance Passwords
Passwords can be configured to control access to your DCS instances, ensuring the
security of your data.

NO TE

After 5 consecutive incorrect password attempts, the account for accessing the chosen DCS
instance will be locked for 5 minutes. Passwords cannot be changed during the lockout
period.
The password must meet the following requirements:
● Cannot be left blank.
● Cannot be the same as the old password.
● Can contain 8 to 32 characters.
● Must contain at least three of the following character types:

● Lowercase letters
● Uppercase letters
● Digits
● special characters (`~!@#$^&*()-_=+\|{}:,<.>/?)

Using Passwords Securely
1. Hide the password when using redis-cli.

If the -a <password> option is used in redis-cli in Linux, the password is prone
to leakage because it is logged and kept in the history. You are advised not to

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 154

use -a <password> when running commands in redis-cli. After connecting to
Redis, run the auth command to complete authentication as shown in the
following example:
$ redis-cli -h 192.168.0.148 -p 6379
redis 192.168.0.148:6379>auth yourPassword
OK
redis 192.168.0.148:6379>

2. Use interactive password authentication or switch between users with
different permissions.
If the script involves DCS instance access, use interactive password
authentication. To enable automatic script execution, manage the script as
another user and authorize execution using sudo.

3. Use an encryption module in your application to encrypt the password.

4.5.2 Changing Instance Passwords
On the DCS console, you can change the password required for accessing your
DCS instance.

NO TE

● You cannot change the password of a DCS instance in password-free mode.
● The DCS instance for which you want to change the password is in the Running state.
● The new password takes effect immediately on the server without requiring a restart.

The client must reconnect to the server using the new password after a pconnect
connection is closed. (The old password can still be used before disconnection.)

Prerequisites
At least one DCS instance has been created.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Choose More > Change Password in the same row as the chosen instance.

Step 5 In the displayed dialog box, set Old Password, New Password, and Confirm
Password.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 155

NO TE

After 5 consecutive incorrect password attempts, the account for accessing the chosen DCS
instance will be locked for 5 minutes. Passwords cannot be changed during the lockout
period.

The password must meet the following requirements:

● Cannot be left blank.

● The new password cannot be the same as the old password.

● Can contain 8 to 32 characters.

● Must contain at least three of the following character types:

– Lowercase letters

– Uppercase letters

– Digits

– special characters (`~!@#$^&*()-_=+\|{}:,<.>/?)

Step 6 In the Change Password dialog box, click OK to confirm the password change.

----End

4.5.3 Resetting Instance Passwords
On the DCS console, you can configure a new password if you forget your instance
password.

NO TE

● For a DCS Redis or Memcached instance, you can change it from password mode to
password-free mode or from password-free mode to password mode by resetting its
password. For details, see Changing Password Settings for DCS Redis Instances and
Changing Password Settings for DCS Memcached Instances.

● The DCS instance for which you want to reset the password is in the Running state.

Prerequisites

At least one DCS instance has been created.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Choose More > Reset Password in the same row as the chosen instance.

Step 5 In the Reset Password dialog box, enter a new password and confirm the
password.

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 156

NO TE

The password must meet the following requirements:
● Cannot be left blank.
● Can contain 8 to 32 characters.
● Contain at least three of the following character types:

– Lowercase letters
– Uppercase letters
– Digits
– special characters (`~!@#$^&*()-_=+\|{}:,<.>/?)

Step 6 Click OK.

NO TE

The system will display a success message only after the password is successfully reset on
all nodes. If the reset fails, the instance will restart and the password of the cache instance
will be restored.

----End

4.5.4 Changing Password Settings for DCS Redis Instances

Scenario
DCS Redis instances can be accessed with or without passwords. After an instance
is created, you can change its password setting in the following scenarios:

● To enable public access for a password-free DCS Redis instance, you must
change the instance to password-protected mode before enabling public
access.

● To access a DCS Redis instance in password-free mode, you can enable
password-free access to clear the existing password of the instance.

NO TE

● To change the password setting, the DCS Redis instance must be in the Running state.
● Password-free access may compromise security. You can set a password by using the

password reset function.
● For security purposes, password-free access must be disabled when public access is

enabled.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 To change the password setting for a DCS Redis instance, choose Operation >
More > Reset Password in the same row as the chosen instance.

Step 5 In the Reset Password dialogue box, perform either of the following operations as
required:

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 157

● From password-protected to password-free:
Switch the toggle for Password-Free Access and click OK.

● From password-free to password-protected:
Enter a password, confirm the password, and click OK.

----End

4.5.5 Changing Password Settings for DCS Memcached
Instances

Scenario
DCS Memcached instances can be accessed with or without passwords. After an
instance is created, you can change its password setting in the following scenarios:

● If you want to access a password-protected DCS Memcached instance without
the username and password, you can enable password-free access to clear the
username and password of the instance.
The Memcached text protocol does not support username and password
authentication. To access a DCS Memcached instance by using the
Memcached text protocol, you must enable password-free access to the
instance.

● If you want to access a password-free DCS Memcached instance using a
username and password, you can set a password for the instance using the
password reset function.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 To enable password-free access to a DCS Memcached instance, choose Operation
> More > Reset Password in the same row as the chosen instance.

Step 5 In the Reset Password dialogue box, perform either of the following operations as
required:
● From password-protected to password-free:

Switch the toggle for Password-Free Access and click OK.
● From password-free to password-protected:

Enter a password, confirm the password, and click OK.

----End

Distributed Cache Service
User Guide 4 Operation Guide

2022-04-12 158

5 Monitoring

5.1 DCS Metrics

Introduction
This section describes DCS metrics reported to Cloud Eye as well as their
namespaces and dimensions. You can use the Cloud Eye console or call APIs to
query the DCS metrics and alarms.

Different types of instances are monitored on different dimensions.

● Single-node:
Single-node instances are monitored on the instance dimension. The
monitoring is conducted on the Redis Server.

● Master/standby:
Master/Standby instances are monitored on the instance and Redis Server
dimensions. Instance monitoring covers the master node, while Redis Server
monitoring covers the master and standby nodes.

● Cluster:
Proxy Cluster instances are monitored on the instance, Redis Server, and proxy
dimensions. Instance monitoring covers the aggregated master node data,
Redis Server monitoring covers each shard in the cluster, and proxy
monitoring covers each proxy in the cluster.
Redis Cluster instances are monitored on the instance and Redis Server
dimensions. Instance monitoring covers the aggregated master node data and
Redis Server monitoring covers each shard in the cluster.

Namespace
SYS.DCS

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 159

DCS Redis 3.0 Instance Metrics
NO TE

The Monitored Objects and Dimensions column lists instances and dimensions that
support the corresponding metrics.

Table 5-1 DCS Redis 3.0 instance metrics

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

cpu_usage CPU
Usage

The monitored
object's maximum
CPU usage among
multiple sampling
values in a
monitoring period
Unit: %

0–
100%

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

memory_us
age

Memor
y Usage

Memory consumed
by the monitored
object
Unit: %

0–
100%

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

net_in_thro
ughput

Networ
k Input
Throug
hput

Inbound throughput
per second on a port
Unit: byte/s

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 160

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

net_out_thr
oughput

Networ
k
Output
Throug
hput

Outbound
throughput per
second on a port
Unit: byte/s

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

connected_c
lients

Connec
ted
Clients

Number of
connected clients
(excluding those
from slave nodes)

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

client_longe
st_out_list

Client
Longest
Output
List

Longest output list
among current client
connections

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

client_bigge
st_in_buf

Client
Biggest
Input
Buf

Maximum input data
length among
current client
connections
Unit: byte

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 161

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

blocked_clie
nts

Blocked
Clients

Number of clients
suspended by block
operations such as
BLPOP, BRPOP, and
BRPOPLPUSH

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

used_memo
ry

Used
Memor
y

Number of bytes
used by the Redis
server
Unit: byte

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

used_memo
ry_rss

Used
Memor
y RSS

Resident set size
(RSS) memory that
the Redis server has
used, which is the
memory that actually
resides in the
memory, including all
stack and heap
memory but not
swapped-out
memory
Unit: byte

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 162

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

used_memo
ry_peak

Used
Memor
y Peak

Peak memory
consumed by Redis
since the Redis server
last started
Unit: byte

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

used_memo
ry_lua

Used
Memor
y Lua

Number of bytes
used by the Lua
engine
Unit: byte

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

memory_fra
g_ratio

Memor
y
Fragme
ntation
Ratio

Current memory
fragmentation, which
is the ratio between
used_memory_rss/
used_memory.

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

total_conne
ctions_recei
ved

New
Connec
tions

Number of
connections received
during the
monitoring period

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 163

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

total_comm
ands_proces
sed

Comma
nds
Process
ed

Number of
commands processed
during the
monitoring period

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

instantaneo
us_ops

Ops per
Second

Number of
commands processed
per second

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

total_net_in
put_bytes

Networ
k Input
Bytes

Number of bytes
received during the
monitoring period
Unit: byte

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

total_net_o
utput_bytes

Networ
k
Output
Bytes

Number of bytes
sent during the
monitoring period
Unit: byte

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 164

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

instantaneo
us_input_kb
ps

Input
Flow

Instantaneous input
traffic
Unit: kbit/s

≥ 0
kbits/s

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

instantaneo
us_output_k
bps

Output
Flow

Instantaneous output
traffic
Unit: kbit/s

≥ 0
kbits/s

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

rejected_co
nnections

Rejecte
d
Connec
tions

Number of
connections that
have exceeded
maxclients and been
rejected during the
monitoring period

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

expired_key
s

Expired
Keys

Number of keys that
have expired and
been deleted during
the monitoring
period

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 165

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

evicted_key
s

Evicted
Keys

Number of keys that
have been evicted
and deleted during
the monitoring
period

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

keyspace_hi
ts

Keyspac
e Hits

Number of successful
lookups of keys in
the main dictionary
during the
monitoring period

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

keyspace_m
isses

Keyspac
e
Misses

Number of failed
lookups of keys in
the main dictionary
during the
monitoring period

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

pubsub_cha
nnels

PubSub
Channe
ls

Number of Pub/Sub
channels

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 166

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

pubsub_pat
terns

PubSub
Pattern
s

Number of Pub/Sub
patterns

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

keyspace_hi
ts_perc

Hit
Rate

Ratio of the number
of Redis cache hits to
the number of
lookups. Calculation:
keyspace_hits/
(keyspace_hits +
keyspace_misses)
Unit: %

0–
100%

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

command_
max_delay

Maxim
um
Comma
nd
Latency

Maximum latency of
commands
Unit: ms

≥ 0 ms Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

auth_errors Authent
ication
Failures

Number of failed
authentications

≥ 0 Monitored
object:
Single-node or
master/standby
DCS Redis
instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 167

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

is_slow_log_
exist

Slow
Query
Logs

Existence of slow
query logs in the
instance

● 1:
yes

● 0:
no

Monitored
object:
Single-node or
master/standby
DCS Redis
instance
Dimension:
dcs_instance_id

1
min
ute

keys Keys Number of keys in
Redis

≥ 0 Monitored
object:
Single-node or
master/standby
DCS Redis
instance
Dimension:
dcs_instance_id

1
min
ute

DCS Redis 4.0 and 5.0 Instance Metrics
NO TE

The Monitored Objects and Dimensions column lists instances and dimensions that
support the corresponding metrics.

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 168

Table 5-2 DCS Redis 4.0 and 5.0 instance metrics

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

cpu_usage CPU
Usage

The monitored
object's maximum
CPU usage among
multiple sampling
values in a
monitoring period
Unit: %

0–
100%

Monitored
object:
Single-node or
master/
standby DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

command_
max_delay

Maximu
m
Comma
nd
Latency

Maximum latency of
commands
Unit: ms

≥ 0 ms Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

total_connec
tions_receive
d

New
Connect
ions

Number of
connections received
during the
monitoring period

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 169

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

is_slow_log_
exist

Slow
Query
Logs

Existence of slow
query logs in the
instance

● 1:
yes

● 0:
no

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

memory_us
age

Memor
y Usage

Memory consumed
by the monitored
object
Unit: %

0–
100%

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

expires Keys
With an
Expirati
on

Number of keys with
an expiration in
Redis

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

keyspace_hit
s_perc

Hit
Rate

Ratio of the number
of Redis cache hits
to the number of
lookups. Calculation:
keyspace_hits/
(keyspace_hits +
keyspace_misses)
Unit: %

0–
100%

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 170

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

used_memo
ry

Used
Memor
y

Number of bytes
used by the Redis
server
Unit: byte

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

used_memo
ry_dataset

Used
Memor
y
Dataset

Dataset memory
that the Redis server
has used
Unit: byte

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

used_memo
ry_dataset_p
erc

Used
Memor
y
Dataset
Ratio

Percentage of
dataset memory that
the Redis server has
used
Unit: %

0–
100%

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 171

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

used_memo
ry_rss

Used
Memor
y RSS

Resident set size
(RSS) memory that
the Redis server has
used, which is the
memory that
actually resides in
the memory,
including all stack
and heap memory
but not swapped-out
memory
Unit: byte

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

instantaneo
us_ops

Ops per
Second

Number of
commands
processed per second

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

keyspace_mi
sses

Keyspac
e
Misses

Number of failed
lookups of keys in
the main dictionary
during the
monitoring period

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 172

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

keys Keys Number of keys in
Redis

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

blocked_clie
nts

Blocked
Clients

Number of clients
suspended by block
operations

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

connected_c
lients

Connect
ed
Clients

Number of
connected clients
(excluding those
from slave nodes)

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

del DEL Number of DEL
commands
processed per second
Unit: Count/s

0–
500,000

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 173

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

evicted_keys Evicted
Keys

Number of keys that
have been evicted
and deleted during
the monitoring
period

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

expire EXPIRE Number of EXPIRE
commands
processed per second
Unit: Count/s

0–
500,000

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

expired_keys Expired
Keys

Number of keys that
have expired and
been deleted during
the monitoring
period

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

get GET Number of GET
commands
processed per second
Unit: Count/s

0–
500,000

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 174

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

hdel HDEL Number of HDEL
commands
processed per second
Unit: Count/s

0–
500,000

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

hget HGET Number of HGET
commands
processed per second
Unit: Count/s

0–
500,000

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

hmget HMGET Number of HMGET
commands
processed per second
Unit: Count/s

0–
500,000

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

hmset HMSET Number of HMSET
commands
processed per second
Unit: Count/s

0–
500,000

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 175

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

hset HSET Number of HSET
commands
processed per second
Unit: Count/s

0–
500,000

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

instantaneo
us_input_kb
ps

Input
Flow

Instantaneous input
traffic
Unit: KB/s

≥ 0
KB/s

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

instantaneo
us_output_k
bps

Output
Flow

Instantaneous
output traffic
Unit: KB/s

≥ 0
KB/s

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

memory_fra
g_ratio

Memor
y
Fragme
ntation
Ratio

Ratio between Used
Memory RSS and
Used Memory

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 176

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

mget MGET Number of MGET
commands
processed per second
Unit: Count/s

0–
500,000

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

mset MSET Number of MSET
commands
processed per second
Unit: Count/s

0–
500,000

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

pubsub_cha
nnels

PubSub
Channe
ls

Number of Pub/Sub
channels

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

pubsub_patt
erns

PubSub
Pattern
s

Number of Pub/Sub
patterns

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 177

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

set SET Number of SET
commands
processed per second
Unit: Count/s

0–
500,000

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

used_memo
ry_lua

Used
Memor
y Lua

Number of bytes
used by the Lua
engine
Unit: byte

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

used_memo
ry_peak

Used
Memor
y Peak

Peak memory
consumed by Redis
since the Redis
server last started
Unit: byte

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

sadd Sadd Number of SADD
commands
processed per second
Unit: Count/s

0–
500,000

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 178

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

smembers Smemb
ers

Number of
SMEMBERS
commands
processed per second
Unit: Count/s

0–
500,000

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

rx_controlle
d

Flow
Control
Times

Number of flow
control times during
the monitoring
period
Unit: Count

≥ 0 Monitored
object:
Redis Cluster
instance
Dimension:
dcs_instance_id

1
min
ute

bandwidth_
usage

Bandwi
dth
Usage

Percentage of the
used bandwidth to
the maximum
bandwidth limit

0–
200%

Monitored
object:
Redis Cluster
instance
Dimension:
dcs_instance_id

1
min
ute

keyspace_mi
sses

Keyspac
e
Misses

Number of failed
lookups of keys in
the main dictionary
during the
monitoring period

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 179

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

used_memo
ry_dataset

Used
Memor
y
Dataset

Dataset memory
that the Redis server
has used

≥ 0 Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

used_memo
ry_dataset_p
erc

Used
Memor
y
Dataset
Ratio

Percentage of
dataset memory that
server has used

0–
100%

Monitored
object:
Single-node,
master/
standby, or
cluster DCS
Redis instance
Dimension:
dcs_instance_id

1
min
ute

Node Metrics of DCS Redis Instances
NO TE

● The following describes the metrics for cluster DCS instances. For Proxy Cluster DCS
Redis 3.0 instances, the monitoring covers Redis Servers and Proxies. For Redis Cluster
DCS Redis 4.0 and 5.0 instances, the monitoring only covers Redis Servers. For details,
see Table 5-3 and Table 5-4.

● The Monitored Objects and Dimensions column lists instances and dimensions that
support the corresponding metrics.

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 180

Table 5-3 Redis Server metrics of DCS instances

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

cpu_usage CPU
Usage

The monitored
object's maximum
CPU usage among
multiple sampling
values in a
monitoring period
Unit: %

0–
100%

Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

memory_us
age

Memory
Usage

Memory consumed
by the monitored
object
Unit: %

0–
100%

Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_cluster_red
is_node

1
min
ute

connected_c
lients

Connect
ed
Clients

Number of
connected clients
(excluding those
from slave nodes)

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 181

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

client_longe
st_out_list

Client
Longest
Output
List

Longest output list
among current client
connections

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

client_bigge
st_in_buf

Client
Biggest
Input
Buf

Maximum input
data length among
current client
connections
Unit: byte

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

blocked_clie
nts

Blocked
Clients

Number of clients
suspended by block
operations such as
BLPOP, BRPOP, and
BRPOPLPUSH

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 182

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

used_memo
ry

Used
Memory

Number of bytes
used by the Redis
server
Unit: byte

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

used_memo
ry_rss

Used
Memory
RSS

RSS memory that
the Redis server has
used, which
including all stack
and heap memory
but not swapped-
out memory
Unit: byte

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

used_memo
ry_peak

Used
Memory
Peak

Peak memory
consumed by Redis
since the Redis
server last started
Unit: byte

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 183

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

used_memo
ry_lua

Used
Memory
Lua

Number of bytes
used by the Lua
engine
Unit: byte

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

memory_fra
g_ratio

Memory
Fragmen
tation
Ratio

Current memory
fragmentation,
which is the ratio
between
used_memory_rss/
used_memory.

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

total_conne
ctions_recei
ved

New
Connecti
ons

Number of
connections received
during the
monitoring period

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 184

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

total_comm
ands_proces
sed

Comma
nds
Processe
d

Number of
commands
processed during the
monitoring period

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance

Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

instantaneo
us_ops

Ops per
Second

Number of
commands
processed per
second

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

total_net_in
put_bytes

Network
Input
Bytes

Number of bytes
received during the
monitoring period
Unit: byte

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance

Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 185

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

total_net_ou
tput_bytes

Network
Output
Bytes

Number of bytes
sent during the
monitoring period
Unit: byte

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance

Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

instantaneo
us_input_kb
ps

Input
Flow

Instantaneous input
traffic
Unit: KB/s

≥ 0
KB/s

Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

instantaneo
us_output_k
bps

Output
Flow

Instantaneous
output traffic
Unit: KB/s

≥ 0
KB/s

Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 186

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

rejected_con
nections

Rejected
Connecti
ons

Number of
connections that
have exceeded
maxclients and been
rejected during the
monitoring period

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance

Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

expired_key
s

Expired
Keys

Number of keys that
have expired and
been deleted during
the monitoring
period

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

evicted_keys Evicted
Keys

Number of keys that
have been evicted
and deleted during
the monitoring
period

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 187

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

pubsub_cha
nnels

PubSub
Channel
s

Number of Pub/Sub
channels

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

pubsub_patt
erns

PubSub
Patterns

Number of Pub/Sub
patterns

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

keyspace_hi
ts_perc

Hit Rate Ratio of the number
of Redis cache hits
to the number of
lookups. Calculation:
keyspace_hits/
(keyspace_hits +
keyspace_misses)
Unit: %

0–
100%

Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 188

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

command_
max_delay

Maximu
m
Comma
nd
Latency

Maximum latency of
commands
Unit: ms

≥ 0 ms Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

is_slow_log_
exist

Slow
Query
Logs

Existence of slow
query logs in the
node

● 1:
yes

● 0: no

Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

keys Keys Number of keys in
Redis

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 189

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

sadd Sadd Number of SADD
commands
processed per
second
Unit: Count/s

0–
500,000

Monitored
object:
Redis Server of
a cluster DCS
Redis 3.0, 4.0,
or 5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

smembers Smembe
rs

Number of
SMEMBERS
commands
processed per
second
Unit: Count/s

0–
500,000

Monitored
object:
Redis Server of
a cluster DCS
Redis 4.0 or
5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

ms_repl_offs
et

Replicati
on Gap

Data
synchronization gap
between the master
and the replica

- Monitored
object:
Replica of a
cluster DCS
Redis 4.0 or
5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 190

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

del DEL Number of DEL
commands
processed per
second
Unit: Count/s

0–
500,000

Monitored
object:
Redis Server of
a cluster DCS
Redis 4.0 or
5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

expire EXPIRE Number of EXPIRE
commands
processed per
second
Unit: Count/s

0–
500,000

Monitored
object:
Redis Server of
a cluster DCS
Redis 4.0 or
5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

get GET Number of GET
commands
processed per
second
Unit: Count/s

0–
500,000

Monitored
object:
Redis Server of
a cluster DCS
Redis 4.0 or
5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 191

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

hdel HDEL Number of HDEL
commands
processed per
second
Unit: Count/s

0–
500,000

Monitored
object:
Redis Server of
a cluster DCS
Redis 4.0 or
5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

hget HGET Number of HGET
commands
processed per
second
Unit: Count/s

0–
500,000

Monitored
object:
Redis Server of
a cluster DCS
Redis 4.0 or
5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

hmget HMGET Number of HMGET
commands
processed per
second
Unit: Count/s

0–
500,000

Monitored
object:
Redis Server of
a cluster DCS
Redis 4.0 or
5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 192

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

hmset HMSET Number of HMSET
commands
processed per
second
Unit: Count/s

0–
500,000

Monitored
object:
Redis Server of
a cluster DCS
Redis 4.0 or
5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

hset HSET Number of HSET
commands
processed per
second
Unit: Count/s

0–
500,000

Monitored
object:
Redis Server of
a cluster DCS
Redis 4.0 or
5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

mget MGET Number of MGET
commands
processed per
second
Unit: Count/s

0–
500,000

Monitored
object:
Redis Server of
a cluster DCS
Redis 4.0 or
5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 193

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

mset MSET Number of MSET
commands
processed per
second
Unit: Count/s

0–
500,000

Monitored
object:
Redis Server of
a cluster DCS
Redis 4.0 or
5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

set SET Number of SET
commands
processed per
second
Unit: Count/s

0–
500,000

Monitored
object:
Redis Server of
a cluster DCS
Redis 4.0 or
5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

rx_controlle
d

Flow
Control
Times

Number of flow
control times during
the monitoring
period
Unit: Count

≥ 0 Monitored
object:
Redis Server of
a cluster DCS
Redis 4.0 or
5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 194

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

bandwidth_
usage

Bandwid
th
Usage

Percentage of the
used bandwidth to
the maximum
bandwidth limit

0–
200%

Monitored
object:
Redis Server of
a cluster DCS
Redis 4.0 or
5.0 instance
Dimension:
dcs_instance_i
d
dcs_cluster_red
is_node

1
min
ute

Table 5-4 Proxy metrics

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

cpu_usage CPU
Usage

The monitored
object's maximum
CPU usage among
multiple sampling
values in a
monitoring period
Unit: %

0–100% Monitored
object:
Proxy in a
Proxy Cluster
DCS Redis 3.0
instance
Dimension:
dcs_instance_i
d
dcs_cluster_pr
oxy_node

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 195

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

memory_us
age

Memory
Usage

Memory consumed
by the monitored
object
Unit: %

0–100% Monitored
object:
Proxy in a
Proxy Cluster
DCS Redis 3.0
instance
Dimension:
dcs_instance_i
d
dcs_cluster_pr
oxy_node

1
min
ute

p_connecte
d_clients

Connecte
d Clients

Number of
connected clients

≥ 0 Monitored
object:
Proxy in a
Proxy Cluster
DCS Redis 3.0
instance
Dimension:
dcs_instance_i
d
dcs_cluster_pr
oxy_node

1
min
ute

max_rxpck_
per_sec

Max. NIC
Data
Packet
Receive
Rate

Maximum number
of data packets
received by the
proxy NIC per
second during the
monitoring period
Unit: packages/
second

0–
10,000,
000

Monitored
object:
Proxy in a
Proxy Cluster
DCS Redis 3.0
instance
Dimension:
dcs_instance_i
d
dcs_cluster_pr
oxy_node

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 196

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

max_txpck_
per_sec

Max. NIC
Data
Packet
Transmit
Rate

Maximum number
of data packets
transmitted by the
proxy NIC per
second during the
monitoring period
Unit: packages/
second

0–
10,000,
000

Monitored
object:
Proxy in a
Proxy Cluster
DCS Redis 3.0
instance
Dimension:
dcs_instance_i
d
dcs_cluster_pr
oxy_node

1
min
ute

max_rxkB_p
er_sec

Maximu
m
Inbound
Bandwidt
h

Largest volume of
data received by the
proxy NIC per
second
Unit: KB/s

≥ 0 KB/s Monitored
object:
Proxy in a
Proxy Cluster
DCS Redis 3.0
instance
Dimension:
dcs_instance_i
d
dcs_cluster_pr
oxy_node

1
min
ute

max_txkB_p
er_sec

Maximu
m
Outboun
d
Bandwidt
h

Largest volume of
data transmitted by
the proxy NIC per
second
Unit: KB/s

≥ 0 KB/s Monitored
object:
Proxy in a
Proxy Cluster
DCS Redis 3.0
instance
Dimension:
dcs_instance_i
d
dcs_cluster_pr
oxy_node

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 197

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

avg_rxpck_p
er_sec

Average
NIC Data
Packet
Receive
Rate

Average number of
data packets
received by the
proxy NIC per
second during the
monitoring period
Unit: packages/
second

0–
10,000,
000

Monitored
object:
Proxy in a
Proxy Cluster
DCS Redis 3.0
instance
Dimension:
dcs_instance_i
d
dcs_cluster_pr
oxy_node

1
min
ute

avg_txpck_p
er_sec

Average
NIC Data
Packet
Transmit
Rate

Average number of
data packets
transmitted by the
proxy NIC per
second during the
monitoring period
Unit: packages/
second

0–
10,000,
000

Monitored
object:
Proxy in a
Proxy Cluster
DCS Redis 3.0
instance
Dimension:
dcs_instance_i
d
dcs_cluster_pr
oxy_node

1
min
ute

avg_rxkB_p
er_sec

Average
Inbound
Bandwidt
h

Average volume of
data received by the
proxy NIC per
second
Unit: KB/s

≥ 0 KB/s Monitored
object:
Proxy in a
Proxy Cluster
DCS Redis 3.0
instance
Dimension:
dcs_instance_i
d
dcs_cluster_pr
oxy_node

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 198

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

avg_txkB_p
er_sec

Average
Outboun
d
Bandwidt
h

Average volume of
data transmitted by
the proxy NIC per
second
Unit: KB/s

≥ 0 KB/s Monitored
object:
Proxy in a
Proxy Cluster
DCS Redis 3.0
instance
Dimension:
dcs_instance_i
d
dcs_cluster_pr
oxy_node

1
min
ute

DCS Memcached Instance Metrics

Table 5-5 DCS Memcached instance metrics

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

cpu_usage CPU
Usage

The monitored
object's
maximum CPU
usage among
multiple
sampling values
in a monitoring
period
Unit: %

0–100% Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 199

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

memory_u
sage

Memory
Usage

Memory
consumed by the
monitored object
Unit: %

0–100% Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

net_in_thro
ughput

Network
Input
Throughp
ut

Inbound
throughput per
second on a port
Unit: byte/s

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

net_out_thr
oughput

Network
Output
Throughp
ut

Outbound
throughput per
second on a port
Unit: byte/s

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_connec
ted_clients

Connecte
d Clients

Number of
connected clients
(excluding those
from slave
nodes)

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 200

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

mc_used_
memory

Used
Memory

Number of bytes
used by
Memcached
Unit: byte

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_used_
memory_rs
s

Used
Memory
RSS

RSS memory
used is the
memory that
actually resides
in the memory,
including all
stack and heap
memory but not
swapped-out
memory
Unit: byte

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_used_
memory_p
eak

Used
Memory
Peak

Peak memory
consumed since
the server last
started
Unit: byte

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_memor
y_frag_rati
o

Memory
Fragment
ation
Ratio

Current memory
fragmentation,
which is the ratio
between
used_memory_rs
s/used_memory.

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 201

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

mc_connec
tions_recei
ved

New
Connectio
ns

Number of
connections
received during
the monitoring
period

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_comma
nds_proces
sed

Comman
ds
Processed

Number of
commands
processed during
the monitoring
period

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_instant
aneous_op
s

Ops per
Second

Number of
commands
processed per
second

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_net_inp
ut_bytes

Network
Input
Bytes

Number of bytes
received during
the monitoring
period
Unit: byte

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 202

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

mc_net_ou
tput_bytes

Network
Output
Bytes

Number of bytes
sent during the
monitoring
period
Unit: byte

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_instant
aneous_inp
ut_kbps

Input
Flow

Instantaneous
input traffic
Unit: KB/s

≥ 0 KB/s Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_instant
aneous_out
put_kbps

Output
Flow

Instantaneous
output traffic
Unit: KB/s

≥ 0 KB/s Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_rejecte
d_connecti
ons

Rejected
Connectio
ns

Number of
connections that
have exceeded
maxclients and
been rejected
during the
monitoring
period

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 203

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

mc_expired
_keys

Expired
Keys

Number of keys
that have expired
and been deleted
during the
monitoring
period

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_evicted
_keys

Evicted
Keys

Number of keys
that have been
evicted and
deleted during
the monitoring
period

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_cmd_g
et

Number
of
Retrieval
Requests

Number of
received data
retrieval requests

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_cmd_se
t

Number
of
Storage
Requests

Number of
received data
storage requests

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 204

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

mc_cmd_fl
ush

Number
of Flush
Requests

Number of
received data
clearance
requests

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_cmd_to
uch

Number
of Touch
Requests

Number of
received requests
for modifying the
validity period of
data

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_get_hit
s

Number
of
Retrieval
Hits

Number of
successful data
retrieval
operations

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_get_mi
sses

Number
of
Retrieval
Misses

Number of failed
data retrieval
operations due to
key nonexistence

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 205

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

mc_delete_
hits

Number
of Delete
Hits

Number of
successful data
deletion
operations

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_delete_
misses

Number
of Delete
Misses

Number of failed
data deletion
operations due to
key nonexistence

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_incr_hit
s

Number
of
Incremen
t Hits

Number of
successful
increment
operations

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_incr_mi
sses

Number
of
Incremen
t Misses

Number of failed
increment
operations due to
key nonexistence

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 206

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

mc_decr_hi
ts

Number
of
Decreme
nt Hits

Number of
successful
decrement
operations

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_decr_m
isses

Number
of
Decreme
nt Misses

Number of failed
decrement
operations due to
key nonexistence

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_cas_hit
s

Number
of CAS
Hits

Number of
successful CAS
operations

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_cas_mi
sses

Number
of CAS
Misses

Number of failed
CAS operations
due to key
nonexistence

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 207

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

mc_cas_ba
dval

Number
of CAS
Values
Not
Matched

Number of failed
CAS operations
due to CAS value
mismatch

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_touch_
hits

Number
of Touch
Hits

Number of
successful
requests for
modifying the
validity period of
data

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_touch_
misses

Number
of Touch
Misses

Number of failed
requests for
modifying the
validity period of
data due to key
nonexistence

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_auth_c
mds

Authentic
ation
Requests

Number of
authentication
requests

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 208

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

mc_auth_e
rrors

Authentic
ation
Failures

Number of failed
authentication
requests

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_curr_ite
ms

Number
of Items
Stored

Number of
stored data items

≥ 0 Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_comma
nd_max_de
lay

Maximu
m
Comman
d Latency

Maximum
latency of
commands
Unit: ms

≥ 0 ms Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

mc_is_slow
_log_exist

Slow
Query
Logs

Existence of slow
query logs in the
instance

● 1: yes
● 0: no

Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 209

Metric ID Metric Description Value
Range

Monitored
Object and
Dimension

Mo
nit
ori
ng
Per
iod
(Ra
w
Dat
a)

mc_keyspa
ce_hits_per
c

Hit Rate Ratio of the
number of
Memcached
cache hits to the
number of
lookups
Unit: %

0–100% Monitored
object:
DCS Memcached
instance
Dimension:
dcs_memcached_
instance_id

1
min
ute

Dimensions

Key Value

dcs_instance_id DCS Redis instance

dcs_cluster_redis_node Redis Server

dcs_cluster_proxy_node Proxy

dcs_memcached_instance_id DCS Memcached instance

5.2 Viewing DCS Monitoring Metrics
You can view DCS instance metrics on the Performance Monitoring page.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 Click the desired instance.

Step 5 Choose Performance Monitoring. All monitoring metrics of the instance are
displayed.

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 210

NO TE

You can also click View Metric in the Operation column on the Cache Manager page. You
will be redirected to the Cloud Eye console. The metrics displayed on the Cloud Eye console
are the same as those displayed on the Performance Monitoring page of the DCS console.

----End

5.3 Configuring Alarm Rules for Critical Metrics
This section describes the alarm rules of some metrics and how to configure the
rules. In actual scenarios, configure alarm rules for metrics by referring to the
following alarm policies.

Alarm Policies for DCS Redis Instances

Table 5-6 DCS Redis instance metrics to configure alarm rules for

Metric Normal
Range

Alarm
Policy

Appro
ach
Upper
Limit

Handling Suggestion

CPU
Usage

0–100 Alarm
threshold:
70
Number of
consecutiv
e periods:
2
Alarm
severity:
Major

No Consider capacity expansion
based on the service analysis.
The CPU capacity of a single-
node or master/standby instance
cannot be expanded. If you need
larger capacity, use a cluster
instance instead.

Memory
Usage

0–100 Alarm
threshold:
70
Number of
consecutiv
e periods:
2
Alarm
severity:
Major

No Expand the capacity of the
instance.

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 211

Metric Normal
Range

Alarm
Policy

Appro
ach
Upper
Limit

Handling Suggestion

Connect
ed
Clients

0–10,000 Alarm
threshold:
8000
Number of
consecutiv
e periods:
2
Alarm
severity:
Major

No Optimize the connection pool in
the service code to prevent the
number of connections from
exceeding the maximum limit.
For single-node and master/
standby instances, the maximum
number of connections allowed is
10,000. You can adjust the
threshold based on service
requirements.

New
Connecti
ons
(Count/
min)

0–10,000 Alarm
threshold:
10,000
Number of
consecutiv
e periods:
2
Alarm
severity:
Minor

- Check whether connect is used
and whether the client
connection is abnormal. Use
persistent connections
("pconnect" in Redis
terminology) to ensure
performance.

Input
Flow

> 0 Alarm
threshold:
80% of the
assured
bandwidth
Number of
consecutiv
e periods:
2
Alarm
severity:
Major

Yes Consider capacity expansion
based on the service analysis and
bandwidth limit.
Configure this alarm only for
single-node and master/standby
DCS Redis 3.0 instances and set
the alarm threshold to 80% of
the assured bandwidth of DCS
Redis 3.0 instances.

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 212

Metric Normal
Range

Alarm
Policy

Appro
ach
Upper
Limit

Handling Suggestion

Output
Flow

> 0 Alarm
threshold:
80% of the
assured
bandwidth
Number of
consecutiv
e periods:
2
Alarm
severity:
Major

Yes Consider capacity expansion
based on the service analysis and
bandwidth limit.
Configure this alarm only for
single-node and master/standby
DCS Redis 3.0 instances and set
the alarm threshold to 80% of
the assured bandwidth of DCS
Redis 3.0 instances.

Procedure
In the following example, an alarm rule is set for the CPU Usage metric.

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 In the navigation pane, choose Cache Manager.

Step 4 In the same row as the DCS instance whose metrics you want to view, choose
More > View Metric.

Step 5 Locate the CPU Usage metric. Hover over the metric and click to create an
alarm rule for the metric.

The Create Alarm Rule page is displayed.

Step 6 Specify the alarm rule details.

1. Specify the alarm policy and alarm severity.
2. Set the alarm notification configurations. If you enable Alarm Notification,

set the validity period, notification object, and trigger condition.
3. Click Next.
4. Under Specify Rules Name, set the alarm name and description.
5. Click Create.

NO TE

For more information about creating alarm rules, see the Cloud Eye User Guide >
Using the Alarm Function > Creating Alarm Rules.

----End

Distributed Cache Service
User Guide 5 Monitoring

2022-04-12 213

6 Auditing

6.1 Operations That Can Be Recorded by CTS
With CTS, you can query, audit, and review operations performed on cloud
resources. Traces include the operation requests sent using the management
console or open APIs as well as the results of these requests.

The following lists the DCS operations that can be recorded by CTS.

Table 6-1 DCS operations that can be recorded by CTS

Operation Resource
Type

Trace Name

Creating an
instance

DCS createDCSInstance

Submitting
an instance
creation
request

DCS submitCreateDCSInstanceRequest

Deleting
multiple
instances

DCS batchDeleteDCSInstance

Deleting an
instance

DCS deleteDCSInstance

Modifying
instance
information

DCS modifyDCSInstanceInfo

Modifying
instance
configuratio
ns

DCS modifyDCSInstanceConfig

Distributed Cache Service
User Guide 6 Auditing

2022-04-12 214

Operation Resource
Type

Trace Name

Changing
instance
password

DCS modifyDCSInstancePassword

Restarting
an instance

DCS restartDCSInstance

Submitting
an instance
restarting
request

DCS submitRestartDCSInstanceRequest

Starting an
instance

DCS startDCSInstance

Submitting
an instance
starting
request

DCS submitStartDCSInstanceRequest

Clearing
instance
data

DCS flushDCSInstance

Restarting
instances in
batches

DCS batchRestartDCSInstance

Submitting a
request to
restart
instances in
batches

DCS submitBatchRestartDCSInstanceRequest

Starting
multiple
instances

DCS batchStartDCSInstance

Submitting a
request to
start
instances in
batches

DCS submitBatchStartDCSInstanceRequest

Restoring
instance
data

DCS restoreDCSInstance

Submitting a
request to
restore
instance
data

DCS submitRestoreDCSInstanceRequest

Distributed Cache Service
User Guide 6 Auditing

2022-04-12 215

Operation Resource
Type

Trace Name

Backing up
instance
data

DCS backupDCSInstance

Submitting a
request to
back up
instance
data

DCS submitBackupDCSInstanceRequest

Deleting
instance
backup files

DCS deleteInstanceBackupFile

Deleting
background
tasks

DCS deleteDCSInstanceJobRecord

Modifying
instance
specification
s

DCS modifySpecification

Submitting a
request to
modify
instance
specification
s

DCS submitModifySpecificationRequest

Creating an
instance
subscription
order

DCS createInstanceOrder

Switching
between
master and
standby
nodes

DCS masterStandbySwitchover

Resetting
instance
password

DCS resetDCSInstancePassword

Submitting a
request to
clear
instance
data

DCS submitFlushDCSInstanceRequest

Distributed Cache Service
User Guide 6 Auditing

2022-04-12 216

6.2 Viewing Traces on the CTS Console
After CTS is enabled, the tracker starts recording operations on cloud resources.
Operation records for the last seven days can be viewed on the CTS console. This
section describes how to query operation records of the last seven days on the CTS
console.

Procedure

Step 1 Log in to the management console.

Step 2 Click in the upper left corner of the management console and select a region
and a project.

NO TE

Select the same region as your application service.

Step 3 Click Service List and choose Management & Deployment > Cloud Trace
Service.

Step 4 In the navigation pane, click Trace List.

Step 5 Specify the filters used for querying traces. The following filters are available:

● Search By:

Select an option from the drop-down list. Select DCS from the Trace Source
drop-down list.

When you select Trace name, you also need to select a specific trace name.

When you select Resource ID, you also need to select a specific resource ID.

When you select Resource name, you also need to select a specific resource
name.

● Operator: Select a specific operator (a user other than tenant).

● Trace Status: Available options include All trace status, normal, warning,
and incident. You can select only one of them.

● Start time and end time: You can specify the time period in which to query
traces.

Step 6 Click on the left of a trace to expand its details, as shown in Figure 6-1.

Figure 6-1 Expanding trace details

Step 7 Click View Trace in the Operation column. In the dialog box shown in Figure 6-2,
the trace structure details are displayed.

Distributed Cache Service
User Guide 6 Auditing

2022-04-12 217

Figure 6-2 Viewing traces

----End

Distributed Cache Service
User Guide 6 Auditing

2022-04-12 218

7 FAQs

7.1 Instance Types/Versions

7.1.1 Comparing Versions
When creating a DCS Redis instance, you can select the cache engine version and
the instance type.

● Version

DCS supports Redis 3.0, 4.0, and 5.0. Table 7-1 describes the differences
between these versions. For more information about Redis 4.0 and 5.0
features, see sections "New Features of DCS for Redis 4.0 " and "New Features
of DCS for Redis 5.0."

Table 7-1 Differences between Redis versions

Item Redis 3.0 Redis 4.0 and Redis 5.0

Open-
source
compatibilit
y

Redis 3.0.7 Redis 4.0.14 and 5.0.9, respectively

Instance
deployment
mode

Based on VMs Containerized based on physical
servers

CPU
architecture

x86 and Arm x86 and Arm

Time
required for
creating an
instance

3–15 minutes, or 10–
30 minutes for cluster
instances.

8 seconds

QPS 100,000 QPS per node 100,000 QPS per node

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 219

Item Redis 3.0 Redis 4.0 and Redis 5.0

Public
network
access

Supported Not supported

Domain
name
connection

Supported within a
VPC

Supported within a VPC

Visualized
data
manageme
nt

Not supported Web CLI for connecting to Redis
and managing data

Instance
types

Single-node, master/
standby, and Proxy
Cluster

Single-node, master/standby, and
Redis Cluster

Instance
total
memory

Ranges from 2 GB to
1024 GB.

Regular specifications range from 2
GB to 1024 GB. Small specifications
of 128 MB, 256 MB, 512 MB, and 1
GB are also available for single-
node and master/standby
instances.

Scale-up or
scale-down

Online scale-up and
scale-down

Online scale-up and scale-down

Backup and
restoration

Supported for master/
standby and cluster
instances

Supported for master/standby and
cluster instances

NO TE

The underlying architectures vary by Redis version. Once a Redis version is chosen, it
cannot be changed. For example, you cannot upgrade a DCS Redis 3.0 instance to
Redis 4.0 or 5.0. If you require a higher Redis version, create a new instance that meets
your requirements and then migrate data from the old instance to the new one.

● Instance type
DCS provides single-node, master/standby, Proxy Cluster, and Redis Cluster
instance types. For details about their architectures and application scenarios,
see section "DCS Instance Types".

7.1.2 New Features of DCS for Redis 4.0
Compared with DCS for Redis 3.0, DCS for Redis 4.0 and later versions add support
for the new features of open-source Redis and supports faster instance creation.

Instance deployment changed from the VM mode to physical server–based
containerization mode. An instance can be created within 8 to 10 seconds.

Redis 4.0 provides the following new features:

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 220

1. New commands, such as MEMORY and SWAPDB
2. Lazyfree, delaying the deletion of large keys and reducing the impact of the

deletion on system resources
3. Memory performance optimization, that is, active defragmentation

MEMORY Command
In Redis 3.0 and earlier versions, you can execute the INFO MEMORY command to
learn only the limited memory statistics. Redis 4.0 introduces the MEMORY
command to help you better understand Redis memory usage.

127.0.0.1:6379[8]> memory help
1) MEMORY <subcommand> arg arg ... arg. Subcommands are:
2) DOCTOR - Return memory problems reports.
3) MALLOC-STATS -- Return internal statistics report from the memory allocator.
4) PURGE -- Attempt to purge dirty pages for reclamation by the allocator.
5) STATS -- Return information about the memory usage of the server.
6) USAGE <key> [SAMPLES <count>] -- Return memory in bytes used by <key> and its value. Nested values
are sampled up to <count
> times (default: 5).
127.0.0.1:6379[8]>

usage

Enter memory usage [key]. If the key exists, the estimated memory used by the
value of the key is returned. If the key does not exist, nil is returned.

127.0.0.1:6379[8]> set dcs "DCS is an online, distributed, in-memory cache service compatible with Redis,
and Memcached."
OK
127.0.0.1:6379[8]> memory usage dcs
(integer) 141
127.0.0.1:6379[8]>

NO TE

1. usage collects statistics on the memory usage of the value and the key, excluding the
Expire memory usage of the key.
// The following is verified based on Redis 5.0.2. Results may differ in other Redis versions.
192.168.0.66:6379> set a "Hello, world!"
OK
192.168.0.66:6379> memory usage a
(integer) 58
192.168.0.66:6379> set abc "Hello, world!"
OK
192.168.0.66:6379> memory usage abc
(integer) 60 //After the key name length changes, the memory usage also changes. This indicates
that the usage statistics contain the usage of the key.
192.168.0.66:6379> expire abc 1000000
(integer) 1
192.168.0.66:6379> memory usage abc
(integer) 60 // After the expiration time is added, the memory usage remains unchanged. This
indicates that the usage statistics do not contain the expire memory usage.
192.168.0.66:6379>

2. For hashes, lists, sets, and sorted sets, the MEMORY USAGE command samples statistics
and provides the estimated memory usage.
Usage: memory usage keyset samples 1000
keyset indicates the key of a set, and 1000 indicates the number of samples.

stats

Returns the detailed memory usage of the current instance.

Usage: memory stats

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 221

127.0.0.1:6379[8]> memory stats
 1) "peak.allocated"
 2) (integer) 2412408
 3) "total.allocated"
 4) (integer) 2084720
 5) "startup.allocated"
 6) (integer) 824928
 7) "replication.backlog"

The following table describes the meanings of some return items.

Table 7-2 memory stats

Return Value Description

peak.allocated Peak memory allocated by the allocator during Redis
instance running. It is the same as used_memory_peak
of info memory.

total.allocated The number of bytes allocated by the allocator. It is the
same as used_memory of info memory

startup.allocated Initial amount of memory consumed by Redis at startup
in bytes.

replication.backlog Size in bytes of the replication backlog. It is specified in
the repl-backlog-size parameter. The default value is 1
MB.

clients.slaves The total size in bytes of all replicas overheads.

clients.normal The total size in bytes of all clients overheads.

overhead.total The sum of all overheads. overhead.total is the total
memory total.allocated allocated by the allocator minus
the actual memory used for storing data.

keys.count The total number of keys stored across all databases in
the server.

keys.bytes-per-key Average number of bytes occupied by each key. Note
that the overhead is also allocated to each key.
Therefore, this value does not indicate the average key
length.

dataset.bytes Memory bytes occupied by Redis data, that is,
overhead.total subtracted from total.allocated

dataset.percentage The percentage of dataset.bytes out of the net memory
usage.

peak.percentage The percentage of peak.allocated out of total.allocated.

fragmentation Memory fragmentation rate.

doctor

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 222

Usage: memory doctor

If the value of used_memory (total.allocated) is less than 5 MB, MEMORY
DOCTOR considers that the memory usage is too small and does not perform
further diagnosis. If any of the following conditions is met, Redis provides
diagnosis results and suggestions:

1. The peak allocated memory is greater than 1.5 times of the current
total_allocated, that is, peak.allocated/total.allocated > 1.5, indicating that
the memory fragmentation rate is high, and that the RSS is much larger than
used_memory.

2. The value of high fragmentation/fragmentation is greater than 1.4, indicating
that the memory fragmentation rate is high.

3. The average memory usage of each normal client is greater than 200 KB,
indicating that the pipeline may be improperly used or the Pub/Sub client
does not process messages in time.

4. The average memory usage of each slave client is greater than 10 MB,
indicating that the write traffic of the master is too high.

purge

Usage: memory purge

Executes the jemalloc internal command to release the memory. The released
objects include the memory that is occupied but not used by Redis processes, that
is, memory fragments.

NO TE

MEMORY PURGE applies only to the Redis instance that uses jemalloc as the allocator.

Lazyfree

Problem

Redis is single-thread. When a time-consuming request is executed, all requests
are queued. Before the request is completed, Redis cannot respond to other
requests. As a result, performance problems may occur. One of the time-
consuming requests is deleting a large key.

Principle

The Lazyfree feature of Redis 4.0 avoids the blockage caused by deleting large
keys, ensuring performance and availability.

When deleting a key, Redis asynchronously releases the memory occupied by the
key. The key release operation is processed in the sub-thread of the background
I/O (BIO).

Usage

1. Active deletion
– unlink

Similar to DEL, this command removes keys. If there are more than 64
elements to be deleted, the memory release operation is executed in an

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 223

independent BIO thread. Therefore, the UNLINK command can delete a
large key containing millions of elements in a short time.

– flushall/flushdb
An ASYNC option was added to FLUSHALL and FLUSHDB in order to let
the entire dataset or a single database to be freed asynchronously.

2. Passive deletion: deletion of expired keys and eviction of large keys
There are four scenarios for passive deletion and each scenario corresponds to
a parameter. These parameters are disabled by default.
lazyfree-lazy-eviction no // Whether to enable Lazyfree when the Redis memory usage reaches
maxmemory and the eviction policy is set.
lazyfree-lazy-expire no // Whether to enable Lazyfree when the key with TTL is going to expire.
lazyfree-lazy-server-del no // An implicit DEL key is used when an existing key is processed.
slave-lazy-flush no // Perform full data synchronization for the standby node. Before loading the RDB
file of the master, the standby node executes the FLUSHALL command to clear its own data.

NO TE

To enable these configurations, contact technical support.

Other New Commands
1. swapdb

Swaps two Redis databases.
swapdb dbindex1 dbindex2

2. zlexcount
Returns the number of elements in the sorted set.
zlexcount key min max

Memory and Performance Optimization
1. Compared to before, the same amount of data can be stored with less

memory.
2. Used memory can be defragmented and gradually evicted.

7.1.3 New Features of DCS for Redis 5.0
DCS for Redis 5.0 is compatible with the new features of the open-source Redis
5.0, in addition to all the improvements and new commands in Redis 4.0.

Stream Data Structure

Stream is a new data type introduced with Redis 5.0. It supports message
persistence and multicast.

Figure 7-1 shows the structure of a Redis stream, which allows messages to be
appended to the stream.

Streams have the following features:

1. A stream can have multiple consumer groups.
2. Each consumer group contains a Last_delivered_id that points to the last

consumed item (message) in the consumer group.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 224

3. Each consumer group contains multiple consumers. All consumers share the
last_delivered_id of the consumer group. A message can be consumed by
only one consumer.

4. pending_ids in the consumer can be used to record the IDs of items that have
been sent to the client, but have not been acknowledged.

5. For detailed comparison between stream and other Redis data structures, see
Table 7-3.

Figure 7-1 Stream data structure

Table 7-3 Differences between streams and existing Redis data structures

Item Stream List, Pub/Sub, Zset

Complexity
of seeking
items

O(log(N)) List: O(N)

Offset Supported. Each item has
a unique ID. The ID is not
changed as other items
are added or evicted.

List: Not supported. If an item is
evicted, the latest item cannot be
located.

Persistence Supported. Streams are
persisted to AOF and
RDB files.

Pub/Sub: Not supported.

Consumer
group

Supported. Pub/Sub: Not supported.

Acknowledg
ment

Supported. Pub/Sub: Not supported.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 225

Item Stream List, Pub/Sub, Zset

Performance Not related to the
number of consumers.

Pub/Sub: Positively related to the
number of clients.

Eviction Streams are memory
efficient by blocking to
evict the data that is too
old and using a radix tree
and listpack.

Zset consumes more memory
because it does not support inserting
same items, blocking, or evicting
data

Randomly
deleting
items

Not supported. Zset: Supported.

Stream commands

Stream commands are described below in the order they are used. For details, see
Table 7-4.

1. Run the XADD command to add a stream item, that is, create a stream. The
maximum number of messages that can be saved can be specified when
adding the item.

2. Create a consumer group by running the XGROUP command.
3. A consumer uses the XREADGROUP command to consume messages.
4. After the consumption, the client runs the XACK command to confirm that

the consumption is successful.

Figure 7-2 Stream commands

Table 7-4 Stream commands description

Command Description Syntax

XACK Deletes one or multiple messages
from the pending entry list (PEL) a
consumer group of the stream.

XACK key group ID [ID ...]

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 226

Command Description Syntax

XADD Adds a specified entry to the
stream at a specified key. If the
key does not exist, running this
command will result in a key to be
automatically created based on
the entry.

XADD key ID field string
[field string ...]

XCLAIM Changes the ownership of a
pending message, so that the new
owner is the consumer specified as
the command argument.

XCLAIM key group
consumer min-idle-time ID
[ID ...] [IDLE ms] [TIME
ms-unix-time]
[RETRYCOUNT count]
[FORCE] [JUSTID]

XDEL Removes the specified entries from
a stream, and returns the number
of entries deleted, that may be
different from the number of IDs
passed to the command in case
certain IDs do not exist.

XDEL key ID [ID ...]

XGROUP Manages the consumer groups
associated with a stream You can
use XGROUP to:
● Create a new consumer group

associated with a stream.
● Destroy a consumer group.
● Remove a specified consumer

from a consumer group.
● Set the consumer group last

delivery ID to something else.

XGROUP [CREATE key
groupname id-or-$] [SETID
key id-or-$] [DESTROY key
groupname]
[DELCONSUMER key
groupname
consumername]

XINFO Retrieves different information
about the streams and associated
consumer groups.

XINFO [CONSUMERS key
groupname] key key
[HELP]

XLEN Returns the number of entries in a
stream. If the specified key does
not exist, 0 is returned, indicating
an empty stream.

XLEN key

XPENDING Obtains data from a stream
through a consumer group. This
command is the interface to
inspect the list of pending
messages in order to observe and
understand what clients are active,
what messages are pending to be
consumed, or to see if there are
idle messages.

XPENDING key group
[start end count]
[consumer]

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 227

Command Description Syntax

XRANGE Returns entries matching a given
range of IDs.

XRANGE key start end
[COUNT count]

XREAD Reads data from one or multiple
streams, only returning entries
with an ID greater than the last
received ID reported by the caller.

XREAD [COUNT count]
[BLOCK milliseconds]
STREAMS key [key ...] ID
[ID ...]

XREADGROU
P

A special version of the XREAD
command, which is used to specify
a consumer group to read from.

XREADGROUP GROUP
group consumer [COUNT
count] [BLOCK
milliseconds] STREAMS
key [key ...] ID [ID ...]

XREVRANGE This command is exactly like
XRANGE, but with the notable
difference of returning the entries
in reverse order, and also taking
the start-end range in reverse
order.

XREVRANGE key end start
[COUNT count]

XTRIM Trims the stream to a specified
number of items, if necessary,
evicting old items (items with
lower IDs).

XTRIM key MAXLEN [~]
count

Message (stream item) acknowledgement

Compared with Pub/Sub, streams not only support consumer groups, but also
message acknowledgement.

When a consumer invokes the XREADGROUP command to read or invokes the
XCLAIM command to take over a message, the server does not know whether the
message is processed at least once. Therefore, once having successfully processed
a message, the consumer should invoke the XACK command to notify the stream
so that the message will not be processed again. In addition, the message is
removed from PEL and the memory will be released from the Redis server.

In some cases, such as network faults, the client does not invoke XACK after
consumption. In such cases, the item ID is retained in PEL. After the client is
reconnected, set the start message ID of XREADGROUP to 0-0, indicating that all
PEL messages and messages after last_id are read. In addition, repeated message
transmission must be supported when consumers consume messages.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 228

Figure 7-3 Acknowledgment mechanism

Memory Usage Optimization

The memory usage of Redis 5.0 is optimized based on the previous version.

● Active defragmentation

If a key is modified frequently and the value length changes constantly, Redis
will allocate additional memory for the key. To achieve high performance,
Redis uses the memory allocator to manage memory. Memory is not always
freed up to the OS. As a result, memory fragments occur. If the fragmentation
ratio (used_memory_rss/used_memory) is greater than 1.5, the memory
usage is inefficient.

To reduce memory fragments, properly plan and use cache data and
standardize data writing.

For Redis 3.0 and earlier versions, memory fragmentation problems are
resolved by restarting the process regularly. It is recommended that the actual
cache data does not exceed 50% of the available memory.

For Redis 4.0, active defragmentation is supported, and memory is
defragmented while online. In addition, Redis 4.0 supports manual memory
defragmentation by running the memory purge command.

For Redis 5.0, improved active defragmentation is supported with the updated
Jemalloc, which is faster, more intelligent, and provides lower latency.

● HyperLogLog implementation improvements

A HyperLogLog is a probabilistic data structure used to calculate the
cardinality of a set while consuming little memory. Redis 5.0 improves
HyperLogLog by further optimizing its memory usage.

For example: the B-tree is efficient in counting, but consumes a lot of
memory. By using HyperLogLog, a lot of memory can be saved. While the B-
tree requires 1 MB memory for counting, HyperLogLog needs only 1 KB.

● Enhanced memory statistics

The information returned by the INFO command is more detailed.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 229

New and Better Commands
1. Enhanced client management

– redis-cli supports cluster management.
In Redis 4.0 and earlier versions, the redis-trib module needs to be
installed to manage clusters.
Redis 5.0 optimizes redis-cli, integrating all cluster management
functions. You can run the redis-cli --cluster help command for more
information.

– The client performance is enhanced in frequent connection and
disconnection scenarios.
This optimization is valuable when your application needs to use short
connections.

2. Simpler use of sorted sets
ZPOPMIN and ZPOPMAX commands are added for sorted sets.
– ZPOPMIN key [count]

Removes and returns up to count members with the lowest scores in the
sorted set stored at key. When returning multiple elements, the one with
the lowest score will be the first, followed by the elements with higher
scores.

– ZPOPMAX key [count]
Removes and returns up to count members with the highest scores in the
sorted set stored at key. When returning multiple elements, the one with
the lowest score will be the first, followed by the elements with lower
scores.

3. More sub-commands added to the help command
The help command can be used to view help information, saving you the
trouble of visiting redis.io every time. For example, run the following
command to view the stream help information: xinfo help
127.0.0.1:6379> xinfo help
1) XINFO <subcommand> arg arg ... arg. Subcommands are:
2) CONSUMERS <key> <groupname> -- Show consumer groups of group <groupname>.
3) GROUPS <key> -- Show the stream consumer groups.
4) STREAM <key> -- Show information about the stream.
5) HELP -- Print this help.
127.0.0.1:6379>

4. redis-cli command input tips
After you enter a complete command, redis-cli displays a parameter tip to
help you memorize the syntax format of the command.
As shown in the following figure, run the zadd command, and redis-cli
displays zadd syntax in light color.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 230

RDB Storing LFU and LRU Information
In Redis 5.0, storage key eviction policies LRU and LFU were added to the RDB
snapshot file.

● FIFO: First in, first out. The earliest stored data is evicted first.
● LRU: Least recently used. Data that is not used for a long time is evicted first.
● LFU: Least frequently used. Data that is least frequently used is evicted first.

NO TE

The RDB file format of Redis 5.0 is modified and is backward compatible. Therefore, if a
snapshot is used for migration, data can be migrated from the earlier Redis versions to
Redis 5.0, but cannot be migrated from the Redis 5.0 to the earlier versions.

7.2 Client and Network Connection

7.2.1 Security Group Configurations
This section describes how to configure a security group for accessing a DCS
instance within a VPC.

An ECS can communicate with a DCS instance if they belong to the same VPC and
security group rules are configured correctly.

In addition, you must configure correct rules for the security groups of both the
ECS and DCS instance so that you can access the instance through your client.

● If the ECS and DCS instance are configured with the same security group,
network access in the group is not restricted by default.

● If the ECS and DCS instance are configured with different security groups, add
security group rules to ensure that the ECS and DCS instance can access each
other.

NO TE

● Suppose that the ECS on which the client runs belongs to security group sg-ECS,
and the DCS instance that the client will access belongs to security group sg-DCS.

● Suppose that the port number of the DCS service is 6379.
● The remote end is a security group or an IP address.

a. Configuring security group for the ECS.
Add the following outbound rule to allow the ECS to access the DCS
instance. Skip this rule if there are no restrictions on the outbound traffic.

b. Configuring security group for the DCS instance.
To ensure that your client can access the DCS instance, add the following
inbound rule to the security group configured for the DCS instance:

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 231

NO TICE

For the source IP address, use the specified IP address of the DCS
instance. Avoid using 0.0.0.0/0 to prevent ECSs bound with the same
security group from being attacked by Redis vulnerability exploits.

7.2.2 Does DCS Support Public Access?
No. DCS instances cannot be access at their EIPs over public networks. To ensure
security, the ECS that serves as a client and the DCS instance that the client will
access must belong to the same VPC.

In the application development and debugging phase, you can also use an SSH
agent to access DCS instances in the local environment.

7.2.3 Does DCS Support Cross-VPC Access?
Cross-VPC means the client and the instance are not in the same VPC.

Generally, VPCs are isolated from each other and ECSs cannot access DCS
instances that belong to a different VPC from these ECSs.

However, by establishing VPC peering connections between VPCs, ECSs can access
single-node and master/standby DCS instances across VPCs.

When using VPC peering connections to access DCS instances across VPCs, adhere
to the following rules:

● If network segments 172.16.0.0/12 to 172.16.0.0/24 are used during DCS
instance creation, the client cannot be in any of the following network
segments: 192.168.1.0/24, 192.168.2.0/24, and 192.168.3.0/24.

● If network segments 192.168.0.0/16 to 192.168.0.0/24 are used during DCS
instance creation, the client cannot be in any of the following network
segments: 172.31.1.0/24, 172.31.2.0/24, and 172.31.3.0/24.

● If network segments 10.0.0.0/8 to 10.0.0.0/24 are used during DCS instance
creation, the client cannot be in any of the following network segments:
172.31.1.0/24, 172.31.2.0/24, and 172.31.3.0/24.

For more information about VPC peering connection, see "VPC Peering
Connection" in Virtual Private Cloud User Guide.

NO TICE

Cluster DCS Redis instances do not support cross-VPC access. ECSs in a VPC cannot
access cluster DCS instances in another VPC by using VPC peering connections.

7.2.4 What Should I Do If Access to DCS Fails After Server
Disconnects?

Analysis: If persistent connections ("pconnect" in Redis terminology) or connection
pooling is used and connections are closed after being used for connecting to DCS
instances, errors will be returned at attempts to reuse the connections.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 232

Solution: When using pconnect or connection pooling, do not close the connection
after the end of a request. If the connection is dropped, re-establish it.

7.2.5 Why Do Requests Sometimes Time Out in Clients?
Occasional timeout errors are normal because of network connectivity and client
timeout configurations.

You are advised to include reconnection operations into your service code to avoid
service failure if a single request fails.

If timeout errors occur frequently, contact O&M personnel.

7.2.6 What Should I Do If an Error Is Returned When I Use the
Jedis Connection Pool?

The error message that will possibly be displayed when you use the Jedis
connection pool is as follows:

redis.clients.jedis.exceptions.JedisConnectionException: Could not get a resource from the pool

If this error message is displayed, check whether your instance is running properly.
If it is running properly, perform the following checks:

Step 1 Network

1. Check the IP address configurations.
Check whether the IP address configured on the Jedis client is the same as the
subnet address configured for your DCS instance.

2. Test the network.
Use the ping command and telnet on the client to test the network.
– If the network cannot be pinged:

For intra-VPC access, ensure that the client and your DCS instance belong
to the same VPC and security group, or the security group of your DCS
instance allows access through port 6379. For details, see Security Group
Configurations.

– If the IP address can be pinged but telnet failed, restart your instance. If
the problem persists after the restart, contact technical support.

Step 2 Check the number of connections.

Check whether the number of established network connections exceeds the upper
limit configured for the Jedis connection pool. If the number of established
connections approaches the configured upper limit, restart the DCS service and
check whether the problem persists. If the number of established connections is
far below the upper limit, continue with the following checks.

In Unix or Linux, run the following command to query the number of established
network connections:

netstat -an | grep 6379 | grep ESTABLISHED | wc -l

In Windows, run the following command to query the number of established
network connections:

netstat -an | find "6379" | find "ESTABLISHED" /C

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 233

Step 3 Check the JedisPool code.

If the number of established connections approaches the upper limit, determine
whether the problem is caused by service concurrency or incorrect usage of
JedisPool.

When using JedisPool, you must call jedisPool.returnResource() or jedis.close()
(recommended) to release the resources after you call jedisPool.getResource().

Step 4 Check the number of TIME_WAIT connections.

Run the ss -s command to check whether there are too many TIME_WAIT
connections on the client.

If there are too many TIME_WAIT connections, modify the kernel parameters by
running the /etc/sysctl.conf command as follows:

##Uses cookies to prevent some SYN flood attacks when the SYN waiting queue overflows.
net.ipv4.tcp_syncookies = 1
##Reuses TIME_WAIT sockets for new TCP connections.
net.ipv4.tcp_tw_reuse = 1
##Enables quick reclamation of TIME_WAIT sockets in TCP connections.
net.ipv4.tcp_tw_recycle = 1
##Modifies the default timeout time of the system.
net.ipv4.tcp_fin_timeout = 30

After the modification, run the /sbin/sysctl -p command for the modification to
take effect.

Step 5 If the problem persists after you perform the preceding checks, perform the
following steps.

Capture packets and send packet files along with the time and description of the
exception to technical support for analysis.

Run the following command to capture packets:

tcpdump -i eth0 tcp and port 6379 -n -nn -s 74 -w dump.pcap

In Windows, you can also install the Wireshark tool to capture packets.

NO TE

Replace the NIC name to the actual one.

----End

7.2.7 Why Is "ERR unknown command" Displayed When I
Access a DCS Redis Instance Through a Redis Client?

The possible causes are as follows:

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 234

1. The command is spelled incorrectly.
As shown in the following figure, the error message is returned because the
correct command for deleting a string should be del.

2. A command available in a higher Redis version is run in a lower Redis version.
As shown in the following figure, the error message is returned because a
stream command (available in Redis 5.0) is run in Redis 3.0.

3. Some commands are disabled.
DCS Redis instance interfaces are fully compatible with the open-source Redis
in terms of data access. However, for ease of use and security purposes, some
operations cannot be initiated through Redis clients. For details about
disabled commands, see Command Compatibility.

7.2.8 How Do I Access a DCS Redis Instance Through Redis
Desktop Manager?

You can access a DCS Redis instance through the Redis Desktop Manager within a
VPC.

1. Enter the address, port number (6379), and authentication password of the
DCS instance you want to access.

2. Click Test Connection.
The system displays a success message if the connection is successful.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 235

Figure 7-4 Accessing a DCS Redis instance through Redis Desktop Manager
over the intranet

NO TE

When accessing a cluster DCS instance, the Redis command is run properly, but an
error message may display on the left because DCS clusters are based on Codis, which
differs from the native Redis in terms of the INFO command output.

7.2.9 What If "ERR Unsupported CONFIG subcommand" is
Displayed in SpringCloud?

By using DCS Redis instances, Spring Session can implement session sharing.
When interconnecting with Spring Cloud, the following error information is
displayed:

Figure 7-5 Spring Cloud error information

For security purposes, DCS does not support the CONFIG command initiated by a
client. You need to perform the following steps:

1. On the DCS console, set the value of the notify-keyspace-event parameter to
Egx for a DCS Redis instance.

2. Add the following content to the XML configuration file of the Spring
framework:

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 236

<util:constant
static-
field="org.springframework.session.data.redis.config.ConfigureRedisAction.NO
_OP"/>

3. Modify the related Spring code. Enable the ConfigureRedisAction.NO_OP
bean component to forbid a client to invoke the CONFIG command.
@Bean
public static ConfigureRedisAction configureRedisAction() {
return ConfigureRedisAction.NO_OP;
}

For more information, see the Spring Session Documentation.

NO TICE

Session sharing is supported only by single-node and master/standby DCS Redis
instances, but not by cluster DCS Redis instances.

7.2.10 How Do I Troubleshoot Redis Connection Failures?
Preliminary checks:

● Check the connection address.
Obtain the connection address from the instance basic information page on
the DCS console.

● Check the instance password.
If the instance password is incorrect, the port can still be accessed but the
authentication will fail.

● Check the port.
Port 6379 is the default port used in intra-VPC access to a DCS Redis instance.

● Check if the maximum bandwidth has been reached.
If the bandwidth reaches the maximum bandwidth for the corresponding
instance specifications, Redis connections may time out.

● Check the inbound access rules of the security group.
Intra-VPC access: If the Redis client and the Redis instance are bound with
different security groups, allow inbound access over port 6379 for the security
group of the instance.
For details, see Security Group Configurations.

● Check the configuration parameter notify-keyspace-events.
Set notify-keyspace-events to Egx.

Further checks:

● Jedis connection pool error
● Error "Read timed out" or "Could not get a resource from the pool"

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 237

https://docs.spring.io/spring-session/docs/current/api/

Check if the KEYS command has been used. This command consumes a lot of
resources and can easily block Redis. Instead, use the SCAN command and
avoid executing the command frequently.

7.2.11 What Should Be Noted When Using Redis for Pub/Sub?
Pay attention to the following issues when using Redis for pub/sub:

● Your client must process messages in a timely manner.
Your client subscribes to a channel. If it does not receive messages in a timely
manner, DCS instance messages may be overstocked. If the size of
accumulated messages reaches the threshold (32 MB by default) or remains
at a certain level (8 MB by default) for a certain period of time (1 minute by
default), your client will be automatically disconnected to prevent server
memory exhaustion.

● Your client must support connection re-establishment in case of
disconnection.
In the event of a disconnection, you need to run the subscribe or psubscribe
command on your client to subscribe to a channel again. Otherwise, your
client cannot receive messages.

● Do not use pub/sub in scenarios with high message reliability requirements.
The Redis pub/sub is not a reliable messaging system. Messages that are not
retrieved will be discarded when your client is disconnected or a master/
standby switchover occurs.

7.3 Redis Usage

7.3.1 Why Is CPU Usage of a DCS Redis Instance 100%?
● Possible cause 1:

The service QPS is so high that the CPU usage spikes to 100%.
● Possible cause 2:

You have run commands that consume a lot of resources, such as KEYS. This
will make CPU usage spike and can easily trigger a master/standby
switchover.

7.3.2 Can I Change the VPC and Subnet for a DCS Redis
Instance?

No. Once an instance is created, its VPC and subnet cannot be changed. If you
want to use a different set of VPC and subnet, create a same instance and specify
a desired set of VPC and subnet. After the new instance is created, you can
migrate data from the old instance to the new instance by following the data
migration instructions.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 238

7.3.3 Why Aren't Security Groups Configured for DCS Redis 4.0
and 5.0 Instances?

Currently, DCS Redis 4.0 and Redis 5.0 instances use VPC endpoints and do not
support security groups.

7.3.4 Do DCS Redis Instances Limit the Size of a Key or Value?
● The maximum allowed size of a key is 512 MB.

To reduce memory usage and facilitate key query, ensure that each key does
not exceed 1 KB.

● The maximum allowed size of a string is 512 MB.
● The maximum allowed size of a Set, List, or Hash is 512 MB.

In essence, a Set is a collection of Strings; a List is a list of Strings; a Hash
contains mappings between string fields and string values.

Prevent the client from constantly writing large values in Redis. Otherwise,
network transmission efficiency will be lowered and the Redis server would take a
longer time to process commands, resulting in higher latency.

7.3.5 Can I Obtain the Addresses of the Nodes in a Cluster
DCS Redis Instance?

Cluster DCS Redis 3.0 instances (Proxy Cluster type) are used in the same way that
you use single-node or master/standby instances. You do not need to know the
backend node addresses.

For a cluster DCS Redis 4.0 or 5.0 instance (Redis Cluster type), run the CLUSTER
NODES command to obtain node addresses:

redis-cli -h {redis_address} -p {redis_port} -a {redis_password} cluster nodes

In the output similar to the following, obtain the IP addresses and port numbers of
all the master nodes.

7.3.6 Why Is Available Memory of a DCS Redis 3.0 Instance
Smaller Than Instance Cache Size?

DCS Redis 3.0 instances are deployed on VMs and some memory is reserved for
system overheads.

7.3.7 Does DCS for Redis Support Multiple Databases?
Both single-node and master/standby DCS Redis instances support multiple
databases. By default, single-node and master/standby DCS instances can read
and write data in 256 databases (databases numbering 0–255).

Cluster DCS instances do not support data read/write in multiple databases.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 239

7.3.8 Does DCS for Redis Support Redis Clusters?
Yes. DCS for Redis 4.0 and 5.0 support Redis Clusters. DCS for Redis 3.0 supports
Proxy Clusters.

7.3.9 Does DCS for Redis Support Sentinel?
Yes. Redis Sentinel is supported by DCS for Redis 4.0 and 5.0 and is enabled by
default. Sentinel constantly checks if master and replica nodes are running
properly. If the master is not running properly, Sentinel starts a failover process
and promotes a replica to master.

However, DCS for Redis 3.0 does not support Redis Sentinel. Instead, it uses
keepalive to monitor master and replica nodes and to manage failovers.

7.3.10 What Is the Default Data Eviction Policy?
Data is evicted from cache based on a user-defined space limit in order to make
space for new data. In the current versions of DCS, you can select an eviction
policy.

noeviction is the default eviction policy for single-node and master/standby DCS
Redis instances. You can change the eviction policy by configuring the instance
parameters on the DCS console.

volatile-lru is the default eviction policy for cluster DCS Redis instances. To
change the eviction policy for cluster instances, contact technical support.

When maxmemory is reached, you can select one of the following eight eviction
policies:

● noeviction: When the memory limit is reached, DCS instances return errors to
clients and no longer process write requests and other requests that could
result in more memory to be used. However, DEL and a few more exception
requests can continue to be processed.

● allkeys-lru: DCS instances try to evict the least recently used keys first, in
order to make space for new data.

● volatile-lru: DCS instances try to evict the least recently used keys with an
expire set first, in order to make space for new data.

● allkeys-random: DCS instances recycle random keys so that new data can be
stored.

● volatile-random: DCS instances evict random keys with an expire set, in order
to make space for new data.

● volatile-ttl: DCS instances evict keys with an expire set, and try to evict keys
with a shorter time to live (TTL) first, in order to make space for new data.

● allkeys-lfu: DCS instances evict the least frequently used keys from all keys.
● volatile-lfu: DCS instances evict the least frequently used keys with an expire

field from all keys.

NO TE

If no key can be recycled, volatile-lru, volatile-random, and volatile-ttl are the same as
noeviction. For details, see the description of noeviction.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 240

7.3.11 What Should I Do If an Error Occurs in Redis Exporter?
Start the Redis exporter using the CLI. Based on the output, check for errors and
troubleshoot accordingly.

7.3.12 Why Is Memory Usage More Than 100%?
This is normal due to Redis functions (such as master/replica replication and
lazyfree). When the memory becomes full, scale up the instance or remove
unnecessary data.

7.3.13 Why Is Redisson Distributed Lock Not Supported by
DCS Proxy Cluster Redis 3.0 Instances?

Redisson implements lock acquisition and unlocking in the following process:

1. Redisson lock acquisition and unlocking are implemented by running Lua
scripts.

2. During lock acquisition, the EXISTS, HSET, PEXPIRE, HEXISTS, HINCRBY,
PEXPIRE, and PTTL commands must be executed in the Lua script.

3. During unlocking, the EXISTS, PUBLISH, HEXISTS, PEXIPRE, and DEL
commands must be executed in the Lua script.

In a proxy-based cluster, the proxy processes PUBLISH and SUBSCRIBE commands
and forwards requests to the Redis server. The PUBLISH command cannot be
executed in the Lua script.

As a result, Proxy Cluster DCS Redis 3.0 instances do not support Redisson
distributed locks. To use Redisson, resort to Redis 4.0 or 5.0 instead.

7.3.14 Can I Customize or Change the Port for Accessing a DCS
Instance?

You cannot customize or change the port for accessing a DCS Redis 3.0 or
Memcached instance. You can customize and change the port for accessing a DCS
Redis 4.0 or 5.0 instance.

● Redis 3.0
Use port 6379 for intra-VPC access.

● Memcached
Use port 11211 for intra-VPC access. Public access is not supported.

● Redis 4.0 and Redis 5.0
You can specify a port (ranging from 1 to 65535) or use the default port
(6379) for accessing a DCS Redis 4.0 or 5.0 instance. If no port is specified, the
default port will be used.

If the instance and the client use different security groups, you must configure
access rules for the security groups, allowing access through the specified port. For
details, see Security Group Configurations.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 241

7.3.15 Can I Modify the Connection Addresses for Accessing a
DCS Instance?

After a DCS instance is created, its intra-VPC connection addresses cannot be
modified.

For details about accessing DCS instances through clients, see Accessing a DCS
Redis Instance Through redis-cli.

7.3.16 Does DCS Support Cross-AZ Deployment?
Master/Standby and cluster DCS Redis instances and DCS Memcached instances
can be deployed across availability zones (AZs).

● If instances nodes in an AZ are faulty, nodes in other AZs will not be affected.
The standby node automatically becomes the master node to continue to
operate, ensuring disaster recovery (DR).

● Cross-AZ deployment does not compromise the speed of data synchronization
between the master and standby nodes.

7.3.17 Why Does It Take a Long Time to Start a Cluster DCS
Instance?

Possible cause: When a cluster instance is started, status and data are
synchronized between the nodes of the instance. If a large amount of data is
continuously written into the instance before the synchronization is complete, the
synchronization will be prolonged and the instance remains in the Starting state.
After the synchronization is complete, the instance enters the Running state.

Solution: Start writing data to an instance only after the instance has been started.

7.3.18 Does DCS for Redis Provide Backend Management
Software?

No. If you wish to query Redis configurations and usage information, use redis-cli.
If you wish to monitor DCS Redis instance metrics, go to the Cloud Eye console.
For details on how to configure and view the metrics, see Monitoring.

7.3.19 Why Is Memory of a DCS Redis Instance Used Up by
Just a Few Keys?

Possible cause: The output buffer may have occupied an excessive amount of
memory.

Solution: After connecting to the instance using redis-cli, run the redis-cli --
bigkeys command to scan for big keys. Then, run the info command to check the
output buffer size.

7.3.20 Can I Recover Data from Deleted DCS Instances?
If a DCS instance is automatically deleted or manually deleted through the Redis
client, its data cannot be retrieved. If you have backed up the instance, you can

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 242

restore its data from the backup. However, the restoration will overwrite the data
written in during the period from the backup and the restoration.

By default, data is not evicted from DCS instances. You can modify the instance
configuration parameters to adjust the eviction policy so that the instance can
evict key values.

7.3.21 Why Is "Error in execution" Returned When I Access
Redis?

Symptom: "Error in execution; nested exception is
io.lettuce.core.RedisCommandExecutionException: OOM command not allowed
when used memory > 'maxmemory'" is returned during a Redis connection.

Analysis: An out-of-memory (OOM) error indicates that the maximum memory is
exceeded. In the error information, the "maxmemory" parameter indicates the
maximum memory configured on the Redis server.

If the memory usage of the Redis instance is less than 100%, the memory of the
node where data is written may have reached the maximum limit. Connect to
each node in the cluster by running redis-cli -h <redis_ip> -p 6379 -a
<redis_password> -c --bigkeys. When connecting to a replica node, run the
READONLY command before running the bigkeys command.

7.4 Redis Commands

7.4.1 How Do I Clear Redis Data?
Exercise caution when clearing data.

● Redis 3.0
Data of a DCS Redis 3.0 instance cannot be cleared on the console, and can
only be cleared by the FLUSHDB or FLUSHALL command in redis-cli.
Run the FLUSHALL command to clear all the data in the instance.
Run the FLUSHDB command to clear the data in the currently selected DB.

● Redis 4.0 and 5.0
To clear data of a DCS Redis 4.0 or 5.0 instance, you can run the FLUSHDB or
FLUSHALL command in redis-cli, use the data clearing function on the DCS
console, or run the FLUSHDB command on Web CLI.
To clear data of a Redis Cluster instance, run the FLUSHDB or FLUSHALL
command on every shard of the instance. Otherwise, data may not be
completely cleared.

NO TE

● Currently, only DCS Redis 4.0 and 5.0 instances support data clearing by using the
DCS console and by running the FLUSHDB command on Web CLI.

● When you run the FLUSHDB command on Web CLI, only one shard is cleared at a
time. If there are multiple shards, connect to and run the FLUSHDB command on
each master node.

● Redis Cluster data cannot be cleared by using Web CLI.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 243

7.4.2 How Do I Rename High-Risk Commands?
Currently, you can only rename critical commands COMMAND, KEYS, FLUSHDB,
FLUSHALL, and HGETALL for DCS Redis 4.0 and 5.0 instances.

Rename them during instance creation or on the console after the instance is
created. To do so, choose More > Command Renaming in the instance list.

7.4.3 Does DCS for Redis Support Pipelining?
Cross-region image pull over public network is supported. For DCS Redis 4.0 and
5.0 instances in the Redis Cluster mode, ensure that all commands in a pipeline
are executed on the same shard.

7.4.4 Does DCS for Redis Support the INCR and EXPIRE
Commands?

Yes. For more information about Redis command compatibility, see Distributed
Cache Service (DCS) 1.9.0 Service Overview (for Huawei Cloud Stack 8.2.0).

7.4.5 Why Do I Fail to Execute Some Redis Commands?
Possible causes include the following:

● The command is incorrect.
● The command is disabled in DCS.

For security purposes, some Redis commands are disabled in DCS. For details
about disabled and restricted Redis commands, see Command Compatibility.

● The LUA script fails to be executed.
For example, the error message "ERR unknown command 'EVAL'" indicates
that your DCS Redis instance is of a lower version that does not support the
LUA script. In this case, contact technical support for the instance to be
upgraded.

● The CLIENT SETNAME and CLIENT GETNAME commands fail to be executed.
This is because the DCS Redis instance is of a lower version that does not
support these commands. In this case, contact technical support for the
instance to be upgraded.

7.4.6 Why Does a Redis Command Fail to Take Effect?
Run the command in redis-cli to check whether the command takes effect.

The following describes two scenarios:

● Scenario 1: Set and query the value of a key to check whether the SET and
GET commands work.
The SET command is used to set the string value. If the value is not changed,
run the following commands in redis-cli to access the instance:

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 244

● Scenario 2: If the timeout set using the EXPIRE command is incorrect, perform
the following operations:
Set the timeout to 10 seconds and run the TTL command to view the
remaining time. As shown in the following example, the remaining time is 7
seconds.

NO TE

Redis clients (including redis-cli, Jedis clients, and Python clients) communicate with Redis
server using a binary protocol.
If Redis commands are run properly in redis-cli, the problem may lie in the service code. In
this case, create logs in the code for further analysis.

7.4.7 Is There a Time Limit on Executing Redis Commands?
What Will Happen If a Command Times Out?

The time limit for executing a Redis command is 1 minute. This limit cannot be
configured. After the execution of a command times out, your client will be
automatically disconnected.

7.5 Instance Scaling and Upgrade

7.5.1 Can DCS Redis Instances Be Upgraded, for Example, from
Redis 3.0 to Redis 4.0 or 5.0?

No. Different Redis versions use different underlying architectures. The Redis
version used by a DCS instance cannot be changed once the instance is created.
However, you will be informed of any defects or problems found in Redis.

If your service requires the features of higher Redis versions, create a DCS Redis
instance of a higher version and then migrate data from the original instance to
the new one. For details on how to migrate data, see Migrating Data with DCS.

7.5.2 Are Services Interrupted If Maintenance is Performed
During the Maintenance Time Window?

O&M personnel will contact you before performing maintenance during the
maintenance time window, informing you of the operations and their impacts. You
do not need to worry about instance running exceptions.

7.5.3 Are Instance Resources Affected During Specification
Modification?

No. Specification modifications can take place while the instance is running and
do not affect any other resources.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 245

7.5.4 Are Services Interrupted During Specification
Modification?

You are advised to change the instance specifications during off-peak hours
because specification modification has the following impacts:

● Impact of instance type changes:
– From single-node to master/standby for a DCS Redis 3.0 instance:

The instance cannot be connected for several seconds and remains read-
only for about 1 minute.

– From master/standby to Proxy Cluster for a DCS Redis 3.0 instance:
The instance cannot be connected and remains read-only for 5 to 30
minutes.

● Impact of capacity expansion and reduction:
– Single-node and master/standby

The DCS Redis 3.0, 4.0, or 5.0 instance cannot be connected for several
seconds and remains read-only for about 1 minute.
For capacity expansion, only the memory of the instance is expanded. The
CPU processing capability is not improved.
Data of single-node instances may not be retained because they do not
support data persistence. After the scaling, check whether the data is
complete and import data if required.

– Proxy Cluster
The instance can be connected, but the CPU will be occupied and the
latency will increase during data migration. During capacity expansion,
new Redis Server nodes are added, and data is automatically balanced to
the new nodes.

– Redis Cluster
The instance can be connected, but the CPU usage and latency will
increase during data migration. During capacity expansion, new Redis
Server nodes are added, and data is automatically balanced to the new
nodes.

– Backup records created before the capacity change cannot be restored.

7.5.5 Why Can't I Modify Specifications for a DCS Redis/
Memcached Instance?

Specifications of a DCS instance cannot be modified if another task of the instance
is still running. For example, you cannot delete or scale up an instance while it is
being restarted. Likewise, you cannot delete an instance while it is being scaled up.

If the specification modification fails, try again later. If it fails again, contact
technical support.

7.6 Monitoring and Alarm

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 246

7.6.1 Does Redis Support Command Audits?
No. To ensure high-performance reads and writes, Redis does not audit
commands. Commands are not printed.

7.6.2 What Should I Do If the Monitoring Data of a DCS Redis
Instance Is Abnormal?

If you have any doubt on the monitoring data of a DCS Redis instance, you can
access the instance through redis-cli and run the INFO ALL command to view the
metrics. For details about the output of the INFO ALL command, see http://
www.redis.io/commands/info.

7.6.3 Why Is Available Memory of Unused DCS Instances Less
Than Total Memory and Why Is Memory Usage of Unused
DCS Instances Greater Than Zero?

The available memory is less than the total memory because some memory is
reserved for system overhead and data persistence (supported by master/standby
instances). DCS instances use a certain amount of memory for Redis-server buffers
and internal data structures. This is why memory usage of unused DCS instances is
greater than zero.

7.6.4 Why Is Used Memory Greater Than Available Memory?
For single-node and master/standby DCS instances, the used instance memory is
measured by the Redis-server process. For cluster DCS instances, the used cluster
memory is the sum of used memory of all shards in the cluster.

Due to the internal implementation of the open-source redis-server, the used
instance memory is normally slightly higher than the available instance memory.

Why is used_memory higher than max_memory?

Redis allocates memory using zmalloc. It does not check whether used_memory
exceeds max_memory every time the memory is allocated. Instead, it checks
whether the current used_memory exceeds max_memory at the beginning of a
periodic task or command processing. If used_memory exceeds max_memory,
eviction is triggered. Therefore, the restrictions of the max_memory policy are not
implemented in real time or rigidly. A case in which the used_memory is greater
than the max_memory may occur occasionally.

7.7 Data Backup, Export, and Migration

7.7.1 How Do I Export DCS Redis Instance Data?
● For master/standby or cluster instances:

Perform the following operations to export the data:

a. On the Backups & Restorations page, view the backup records.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 247

http://www.redis.io/commands/info
http://www.redis.io/commands/info

b. If there are no backup records, create a backup manually and download
the backup file as prompted.

NO TE

If your DCS instances were created a long time ago, the versions of these instances
may not be advanced enough to support some new functions (such as backup and
restoration). You can contact technical support to upgrade your DCS instances. After
the upgrade, you can back up and restore your instances.

● For single-node instances:
Single-node instances do not support the backup function. You can use redis-
cli to export RDB files. This operation depends on SYNC command.
– If the instance allows the SYNC command (such as a Redis 3.0 single-

node instance), run the following command to export the instance data:
redis-cli -h {source_redis_address} -p 6379 [-a password] --rdb
{output.rdb}

– If the instance does not allow the SYNC command (such as a Redis 4.0 or
5.0 single-node instance), migrate the instance data to a master/standby
instance and export the data by using the backup function.

7.7.2 Can I Export Backup Data of DCS Redis Instances to RDB
Files Using the Console?

● Redis 3.0
No. On the console, backup data of a DCS Redis 3.0 instance can be exported
only to AOF files. To export data to RDB files, run the following command in
redis-cli:
redis-cli -h {redis_address} -p 6379 [-a password] --rdb {output.rdb}

● Redis 4.0 and 5.0
Yes. Backup data of a DCS Redis 4.0 or 5.0 instance is exported from the
console to RDB files. You cannot use redis-cli to export such data to RDB files.

7.7.3 Does DCS Support Data Persistence?
DCS Redis instances:
● Single-node: Not supported
● Master/Standby and cluster: Supported

DCS Memcached instances:
● Single-node: Not supported
● Master/Standby: Supported

7.7.4 Online Migration with Rump

Background

Rump is an open-source tool designed for migrating Redis data online. It supports
migration between DBs of the same instance and between DBs of different
instances.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 248

https://github.com/stickermule/rump

Migration Principles

Rump uses the SCAN command to acquire keys and the DUMP/RESTORE
command to get or set values.

Featuring time complexity O(1), SCAN is capable of quickly getting all keys.
DUMP/RESTORE is used to read/write values independent from the key type.

Rump brings the following benefits:

● The SCAN command replaces the KEYS command to avoid blocking Redis.
● Any type of data can be migrated.
● SCAN and DUMP/RESTORE operations are pipelined, improving the network

efficiency during data migration.
● No temporary file is involved, saving disk space.
● Buffered channels are used to optimize performance of the source server.

NO TICE

1. To cluster DCS instances, you cannot use Rump. Instead, use redis-port or redis-
cli.

2. To prevent migration command resolution errors, do not include special
characters (#@:) in the instance password.

3. Stop the service before migrating data. If data is kept being written in during
the migration, some keys might be lost.

Step 1: Installing Rump
1. Download Rump (release version).

On 64-bit Linux, run the following command:
wget https://github.com/stickermule/rump/releases/download/0.0.3/
rump-0.0.3-linux-amd64;

2. After decompression, run the following commands to add the execution
permission:
mv rump-0.0.3-linux-amd64 rump;
chmod +x rump;

Step 2: Migrating Data

rump -from {source_redis_address} -to {target_redis_address}

Parameter/Option description:

● {source_redis_address}
Source Redis instance address, in the format of redis://
[user:password@]host:port/db. [user:password@] is optional. If the instance
is accessed in password-protected mode, you must specify the password in the
RFC 3986 format. user can be omitted, but the colon (:) cannot be omitted.
For example, the address may be redis://:mypassword@192.168.0.45:6379/1.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 249

https://github.com/stickermule/rump/releases

db is the sequence number of the database. If it is not specified, the default
value is 0.

● {target_redis_address}
Address of the target Redis instance, in the same format as the source.
In the following example, data in DB0 of the source Redis is migrated to the
target Redis whose connection address is 192.168.0.153. ****** stands for the
password.
[root@ecs ~]# ./rump -from redis://127.0.0.1:6379/0 -to redis://:******@192.168.0.153:6379/0
.Sync done.
[root@ecs ~]#

7.8 Master/Standby Switchover

7.8.1 When Does a Master/Standby Switchover Occur?
A master/standby switchover may occur in the following scenarios:

● A master/standby switchover operation is initiated on the DCS Console.
● If the master node of a master/standby instance fails, a master/standby

switchover will be triggered.
For example, running commands that consume a lot of resources, such as
KEYS commands, will cause CPU usage to spike and as result triggers a
master/standby switchover.

● If you restart a master/standby instance on the DCS console, a master/
standby switchover will be triggered.

After a master/standby switchover occurs, you will receive a notification. Check
whether the client services are running properly. If not, check whether the TCP
connection is normal and whether it can be re-established after the master/
standby switchover to restore the services.

7.8.2 How Does Master/Standby Switchover Affect Services?
If a fault occurs in a master/standby or cluster DCS instance, a failover is triggered
automatically. Services may be interrupted for less than half a minute during
exception detection and failover.

7.8.3 Does the Client Need to Switch the Connection Address
After a Master/Standby Switchover?

No. If the master fails, the standby node will be promoted to master and takes the
original IP address.

7.8.4 How Does Redis Master/Standby Replication Work?
Redis master/standby instances are also called master/slave instances. Generally,
updates to the master cache node are automatically and asynchronously
replicated to the standby cache node. This means that data in the standby cache
node may not always be consistent with data in the master cache node. The
inconsistency is typically seen when the I/O write speed of the master node is

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 250

faster than the synchronization speed of the standby node or a network latency
occurs between the master and standby nodes. If a failover happens when some
data is not yet replicated to the standby node, such data may be lost after the
failover.

7.9 Memcached Usage

7.9.1 Can I Dump DCS Memcached Instance Data for Analysis?
No.

7.9.2 What Memcached Version Is Compatible with DCS for
Memcached?

DCS for Memcached is based on Redis 3.0.7 and is compatible with Memcached
1.5.1.

7.9.3 What Data Structures Does DCS for Memcached
Support?

Only the key-value structure is supported.

7.9.4 Does DCS for Memcached Support Public Access?
No. The ECS that serves as a client and the DCS instance that the client will access
must belong to the same VPC. In the application development and debugging
phase, you can also use an SSH agent to access DCS instances in the local
environment.

7.9.5 Can I Modify Configuration Parameters of DCS
Memcached Instances?

Parameter configuration is allowed only when DCS instances are in the Running
state.

For details, see Modifying Configuration Parameters.

7.9.6 What Are the Differences Between DCS for Memcached
and Self-Hosted Memcached?

Table 7-5 describes the differences between DCS for Memcached and self-hosted
Memcached.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 251

Table 7-5 Comparing DCS for Memcached and self-hosted Memcached

Item DCS Memcached Self-Hosted Memcached

Confirmi
ng
Deploym
ent

Easy to deploy. DCS for
Memcached can be used right out
of the box without requiring you
to worry about the hardware or
software.

Involves complicated operations
and settings.

Availabili
ty

Master/Standby instances use hot
standby to ensure stable services.
If the master node is faulty, the
standby cache node will
automatically become the master
node to prevent a single point of
failure.

Requires additional
configurations.

Security Uses the VPC and security groups
for network access security
control.

Requires you to design and
implement a security
mechanism by yourself.

Scale-up Supports online scale-up on the
console.

Requires additional hardware
and restarting your service.

7.9.7 What Policies Does DCS for Memcached Use to Deal
with Expired Data?

DCS for Memcached allows you to set the expiration time for stored data based
on service requirements. For example, you can set the expire time when
performing the add operation.

By default, data is not evicted from DCS Memcached instances. In the current
version of DCS for Memcached, you can select an eviction policy.

For details about the six types of data eviction policies, see What Is the Default
Data Eviction Policy?

7.9.8 How Should I Select AZs When Creating a DCS
Memcached Instance?

Different AZs within a region do not differ in functions.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 252

Generally, instance deployment within an AZ features lower network latency while
cross-AZ deployment ensures disaster recovery. If your application requires lower
network latency, choose single-AZ deployment.

DCS for Memcached supports cross-AZ deployment. When creating a DCS
Memcached instance on the DCS console, you can select any AZ in the same
region as your ECS for communication between your ECS and instance. For lower
network latency, select the same AZ as your ECS.

Note that there may be only one available AZ due to insufficient resources when
you create a DCS Memcached instance. This does not affect the normal use of
DCS.

Distributed Cache Service
User Guide 7 FAQs

2022-04-12 253

A Change History

Table A-1 Change history

Released On Description

2022-04-12 This issue is the first official release.

Distributed Cache Service
User Guide A Change History

2022-04-12 254

	Contents
	1 Service Overview
	1.1 What Is DCS?
	1.2 Application Scenarios
	1.3 DCS Instance Types
	1.3.1 Single-Node Redis
	1.3.2 Master/Standby Redis
	1.3.3 Proxy Cluster Redis
	1.3.4 Redis Cluster
	1.3.5 Single-Node Memcached
	1.3.6 Master/Standby Memcached

	1.4 DCS Instance Specifications
	1.4.1 Redis 3.0 Instance Specifications
	1.4.2 Redis 4.0 and 5.0 Instance Specifications
	1.4.3 Memcached Instance Specifications

	1.5 Command Compatibility
	1.5.1 Redis 3.0 Commands
	1.5.2 Redis 4.0 Commands
	1.5.3 Redis 5.0 Commands
	1.5.4 Web CLI Commands
	1.5.5 Memcached Commands
	1.5.6 Command Restrictions for Cluster Instances
	1.5.7 Other Command Usage Restrictions

	1.6 HA and DR Policies
	1.7 Comparing Redis Versions
	1.8 Comparing Redis and Memcached
	1.9 Comparing DCS and Open-Source Cache Services
	1.10 Basic Concepts
	1.11 Permissions Management
	1.12 Related Services

	2 Permissions Management
	2.1 Creating a User and Granting DCS Permissions
	2.2 DCS Custom Policies

	3 Getting Started
	3.1 Creating an Instance
	3.1.1 Identifying Requirements
	3.1.2 Preparing the Environment
	3.1.3 Creating a DCS Redis Instance
	3.1.4 Creating a DCS Memcached Instance

	3.2 Accessing an Instance
	3.2.1 Accessing a DCS Redis Instance Through redis-cli
	3.2.2 Access in Different Languages
	3.2.2.1 Java
	3.2.2.1.1 Jedis
	3.2.2.1.2 Lettuce
	3.2.2.1.3 Redisson

	3.2.2.2 Lettuce Integration with Spring Boot
	3.2.2.3 Clients in Python
	3.2.2.4 go-redis
	3.2.2.5 hiredis in C++
	3.2.2.6 C#
	3.2.2.7 PHP
	3.2.2.7.1 phpredis
	3.2.2.7.2 Predis

	3.2.2.8 Node.js

	3.2.3 Accessing a DCS Redis 4.0 or 5.0 Instance on the Console
	3.2.4 Accessing a DCS Memcached Instance

	3.3 Viewing Details of a DCS Instance

	4 Operation Guide
	4.1 Operating DCS Instances
	4.1.1 Modifying DCS Instance Specifications
	4.1.2 Restarting DCS Instances
	4.1.3 Deleting DCS Instances
	4.1.4 Performing a Master/Standby Switchover for a DCS Instance
	4.1.5 Clearing DCS Instance Data
	4.1.6 Exporting DCS Instance List
	4.1.7 Command Renaming

	4.2 Managing DCS Instances
	4.2.1 Configuration Notice
	4.2.2 Modifying Configuration Parameters
	4.2.3 Modifying Maintenance Time Window
	4.2.4 Modifying the Security Group
	4.2.5 Viewing Background Tasks
	4.2.6 Viewing Data Storage Statistics of a DCS Redis 3.0 Proxy Cluster Instance
	4.2.7 Managing Tags
	4.2.8 Managing Shards and Replicas
	4.2.9 Cache Analysis
	4.2.10 Managing IP Address Whitelist
	4.2.11 Viewing Redis Slow Queries
	4.2.12 Viewing Redis Run Logs
	4.2.13 Diagnosing an Instance

	4.3 Backing Up and Restoring DCS Instances
	4.3.1 Overview
	4.3.2 Configuring a Backup Policy
	4.3.3 Manually Backing Up a DCS Instance
	4.3.4 Restoring a DCS Instance
	4.3.5 Downloading a Backup File

	4.4 Migrating Data with DCS
	4.4.1 Introduction to Migration with DCS
	4.4.2 Importing Backup Files
	4.4.2.1 Importing Backup Files from an OBS Bucket
	4.4.2.2 Importing Backup Files from Redis

	4.4.3 Migrating Data Online

	4.5 Managing Passwords
	4.5.1 DCS Instance Passwords
	4.5.2 Changing Instance Passwords
	4.5.3 Resetting Instance Passwords
	4.5.4 Changing Password Settings for DCS Redis Instances
	4.5.5 Changing Password Settings for DCS Memcached Instances

	5 Monitoring
	5.1 DCS Metrics
	5.2 Viewing DCS Monitoring Metrics
	5.3 Configuring Alarm Rules for Critical Metrics

	6 Auditing
	6.1 Operations That Can Be Recorded by CTS
	6.2 Viewing Traces on the CTS Console

	7 FAQs
	7.1 Instance Types/Versions
	7.1.1 Comparing Versions
	7.1.2 New Features of DCS for Redis 4.0
	7.1.3 New Features of DCS for Redis 5.0

	7.2 Client and Network Connection
	7.2.1 Security Group Configurations
	7.2.2 Does DCS Support Public Access?
	7.2.3 Does DCS Support Cross-VPC Access?
	7.2.4 What Should I Do If Access to DCS Fails After Server Disconnects?
	7.2.5 Why Do Requests Sometimes Time Out in Clients?
	7.2.6 What Should I Do If an Error Is Returned When I Use the Jedis Connection Pool?
	7.2.7 Why Is "ERR unknown command" Displayed When I Access a DCS Redis Instance Through a Redis Client?
	7.2.8 How Do I Access a DCS Redis Instance Through Redis Desktop Manager?
	7.2.9 What If "ERR Unsupported CONFIG subcommand" is Displayed in SpringCloud?
	7.2.10 How Do I Troubleshoot Redis Connection Failures?
	7.2.11 What Should Be Noted When Using Redis for Pub/Sub?

	7.3 Redis Usage
	7.3.1 Why Is CPU Usage of a DCS Redis Instance 100%?
	7.3.2 Can I Change the VPC and Subnet for a DCS Redis Instance?
	7.3.3 Why Aren't Security Groups Configured for DCS Redis 4.0 and 5.0 Instances?
	7.3.4 Do DCS Redis Instances Limit the Size of a Key or Value?
	7.3.5 Can I Obtain the Addresses of the Nodes in a Cluster DCS Redis Instance?
	7.3.6 Why Is Available Memory of a DCS Redis 3.0 Instance Smaller Than Instance Cache Size?
	7.3.7 Does DCS for Redis Support Multiple Databases?
	7.3.8 Does DCS for Redis Support Redis Clusters?
	7.3.9 Does DCS for Redis Support Sentinel?
	7.3.10 What Is the Default Data Eviction Policy?
	7.3.11 What Should I Do If an Error Occurs in Redis Exporter?
	7.3.12 Why Is Memory Usage More Than 100%?
	7.3.13 Why Is Redisson Distributed Lock Not Supported by DCS Proxy Cluster Redis 3.0 Instances?
	7.3.14 Can I Customize or Change the Port for Accessing a DCS Instance?
	7.3.15 Can I Modify the Connection Addresses for Accessing a DCS Instance?
	7.3.16 Does DCS Support Cross-AZ Deployment?
	7.3.17 Why Does It Take a Long Time to Start a Cluster DCS Instance?
	7.3.18 Does DCS for Redis Provide Backend Management Software?
	7.3.19 Why Is Memory of a DCS Redis Instance Used Up by Just a Few Keys?
	7.3.20 Can I Recover Data from Deleted DCS Instances?
	7.3.21 Why Is "Error in execution" Returned When I Access Redis?

	7.4 Redis Commands
	7.4.1 How Do I Clear Redis Data?
	7.4.2 How Do I Rename High-Risk Commands?
	7.4.3 Does DCS for Redis Support Pipelining?
	7.4.4 Does DCS for Redis Support the INCR and EXPIRE Commands?
	7.4.5 Why Do I Fail to Execute Some Redis Commands?
	7.4.6 Why Does a Redis Command Fail to Take Effect?
	7.4.7 Is There a Time Limit on Executing Redis Commands? What Will Happen If a Command Times Out?

	7.5 Instance Scaling and Upgrade
	7.5.1 Can DCS Redis Instances Be Upgraded, for Example, from Redis 3.0 to Redis 4.0 or 5.0?
	7.5.2 Are Services Interrupted If Maintenance is Performed During the Maintenance Time Window?
	7.5.3 Are Instance Resources Affected During Specification Modification?
	7.5.4 Are Services Interrupted During Specification Modification?
	7.5.5 Why Can't I Modify Specifications for a DCS Redis/Memcached Instance?

	7.6 Monitoring and Alarm
	7.6.1 Does Redis Support Command Audits?
	7.6.2 What Should I Do If the Monitoring Data of a DCS Redis Instance Is Abnormal?
	7.6.3 Why Is Available Memory of Unused DCS Instances Less Than Total Memory and Why Is Memory Usage of Unused DCS Instances Greater Than Zero?
	7.6.4 Why Is Used Memory Greater Than Available Memory?

	7.7 Data Backup, Export, and Migration
	7.7.1 How Do I Export DCS Redis Instance Data?
	7.7.2 Can I Export Backup Data of DCS Redis Instances to RDB Files Using the Console?
	7.7.3 Does DCS Support Data Persistence?
	7.7.4 Online Migration with Rump

	7.8 Master/Standby Switchover
	7.8.1 When Does a Master/Standby Switchover Occur?
	7.8.2 How Does Master/Standby Switchover Affect Services?
	7.8.3 Does the Client Need to Switch the Connection Address After a Master/Standby Switchover?
	7.8.4 How Does Redis Master/Standby Replication Work?

	7.9 Memcached Usage
	7.9.1 Can I Dump DCS Memcached Instance Data for Analysis?
	7.9.2 What Memcached Version Is Compatible with DCS for Memcached?
	7.9.3 What Data Structures Does DCS for Memcached Support?
	7.9.4 Does DCS for Memcached Support Public Access?
	7.9.5 Can I Modify Configuration Parameters of DCS Memcached Instances?
	7.9.6 What Are the Differences Between DCS for Memcached and Self-Hosted Memcached?
	7.9.7 What Policies Does DCS for Memcached Use to Deal with Expired Data?
	7.9.8 How Should I Select AZs When Creating a DCS Memcached Instance?

	A Change History

